This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088528 #19 Sep 12 2023 20:49:10 %S A088528 0,0,1,1,3,3,6,6,10,12,17,18,26,30,40,44,58,66,84,95,120,135,166,186, %T A088528 230,257,314,350,421,476,561,626,749,831,986,1095,1276,1424,1666,1849, %U A088528 2138,2388,2741,3042,3522,3879,4441,4928,5617,6222,7084,7802,8852,9800 %N A088528 Let m = number of ways of partitioning n into parts using all the parts of a subset of {1, 2, ..., n-1} whose sum of all parts of a subset is less than n; a(n) gives number of different subsets of {1, 2, ..., n-1} whose m is 0. %C A088528 Note that {2, 3} is counted for n = 6 because although 6 = 2+2+2 = 3+3, there is no partition that includes both 2 and 3. - _David Wasserman_, Aug 09 2005 %C A088528 Said differently, a(n) is the number of finite nonempty sets of positive integers with sum < n that cannot be linearly combined using all positive coefficients to obtain n. - _Gus Wiseman_, Sep 10 2023 %e A088528 a(5)=3 because there are three different subsets, {2}, {3} & {4}; a(6)=3 because there are three different subsets, {4}, {5} & {2,3}. %e A088528 From _Gus Wiseman_, Sep 10 2023: (Start) %e A088528 The set {3,5} is not counted under a(8) because 1*3 + 1*5 = 8, but it is counted under a(9) and a(10), and it is not counted under a(11) because 2*3 + 1*5 = 11. %e A088528 The a(3) = 1 through a(11) = 17 subsets: %e A088528 {2} {3} {2} {4} {2} {3} {2} {3} {2} %e A088528 {3} {5} {3} {5} {4} {4} {3} %e A088528 {4} {2,3} {4} {6} {5} {6} {4} %e A088528 {5} {7} {6} {7} {5} %e A088528 {6} {2,5} {7} {8} {6} %e A088528 {2,4} {3,4} {8} {9} {7} %e A088528 {2,4} {2,5} {8} %e A088528 {2,6} {2,7} {9} %e A088528 {3,4} {3,5} {10} %e A088528 {3,5} {3,6} {2,4} %e A088528 {4,5} {2,6} %e A088528 {2,3,4} {2,8} %e A088528 {3,6} %e A088528 {3,7} %e A088528 {4,5} %e A088528 {4,6} %e A088528 {2,3,5} %e A088528 (End) %t A088528 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A088528 Table[Length[Select[Select[Subsets[Range[n]],0<Total[#]<n&],combp[n,#]=={}&]],{n,15}] (* _Gus Wiseman_, Sep 12 2023 *) %Y A088528 The complement is A088571, allowing sum n A088314. %Y A088528 For sets with max < n instead of sum < n we have A365045, nonempty A070880. %Y A088528 For nonnegative coefficients we have A365312, complement A365311. %Y A088528 For sets with max <= n we have A365322. %Y A088528 For partitions we have A365323, nonnegative A365378. %Y A088528 A116861 and A364916 count linear combinations of strict partitions. %Y A088528 A326083 and A124506 appear to count combination-free subsets. %Y A088528 Cf. A000009, A326080, A364350, A364534, A365043, A365321, A365380. %K A088528 easy,nonn %O A088528 1,5 %A A088528 _Naohiro Nomoto_, Nov 16 2003 %E A088528 More terms from _David Wasserman_, Aug 09 2005