This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088529 #40 Jun 26 2025 12:07:57 %S A088529 1,1,2,1,1,1,3,2,1,1,3,1,1,1,4,1,3,1,3,1,1,1,2,2,1,3,3,1,1,1,5,1,1,1, %T A088529 2,1,1,1,2,1,1,1,3,3,1,1,5,2,3,1,3,1,2,1,2,1,1,1,4,1,1,3,6,1,1,1,3,1, %U A088529 1,1,5,1,1,3,3,1,1,1,5,4,1,1,4,1,1,1,2,1,4,1,3,1,1,1,3,1,3,3,2 %N A088529 Numerator of Bigomega(n)/Omega(n). %D A088529 H. Z. Cao, On the average of exponents, Northeast. Math. J., Vol. 10 (1994), pp. 291-296. %H A088529 Antti Karttunen, <a href="/A088529/b088529.txt">Table of n, a(n) for n = 2..10000</a> %H A088529 R. L. Duncan, <a href="https://doi.org/10.1090/S0002-9939-1970-0252311-1">On the factorization of integers</a>, Proc. Amer. Math. Soc. 25 (1970), 191-192. %H A088529 Steven Finch, <a href="https://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2022. %H A088529 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A088529 Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = numerator of B/O. %F A088529 a(n) = A136565(n) = A181591(n) for n: 2 <= n < 24. - _Reinhard Zumkeller_, Nov 01 2010 %F A088529 Sum_{k=2..n} a(k)/A088530(k) ~ n + O(n/log(log(n))) (Duncan, 1970). - _Amiram Eldar_, Oct 14 2022 %F A088529 Sum_{k=2..n} a(k)/A088530(k) = n + c_1 * n/log(log(n)) + c_2 * n/log(log(n))^2 + O(n/log(log(n))^3), where c_1 = A136141 and c_2 = A272531 (Cao, 1994; Finch, 2020). - _Amiram Eldar_, Dec 15 2022 %e A088529 bigomega(24) / omega(24) = 4/2 = 2, so a(24) = 2. %t A088529 Table[Numerator[PrimeOmega[n]/PrimeNu[n]], {n, 2, 100}] (* _Michael De Vlieger_, Jul 12 2017 *) %o A088529 (PARI) for(x=2,100,y=bigomega(x)/omega(x);print1(numerator(y)",")) %o A088529 (Python) %o A088529 from sympy import primefactors, Integer %o A088529 def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1 %o A088529 def omega(n): return Integer(len(primefactors(n))) %o A088529 def a(n): return (bigomega(n)/omega(n)).numerator %o A088529 print([a(n) for n in range(2, 51)]) # _Indranil Ghosh_, Jul 13 2017 %Y A088529 Cf. A001221, A001222, A070012, A070013, A070014, A088530 (gives the denominator). %Y A088529 Cf. A136141, A272531. %K A088529 nonn,frac %O A088529 2,3 %A A088529 _Cino Hilliard_, Nov 16 2003