This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088577 #19 Feb 16 2025 08:32:51 %S A088577 5,1,20,6,12,23,2,11,4,8,232,35,122,56,255,367,1,36,3,189,20,55,63, %T A088577 132,79,214,68,64,52,175,41,138,182,6,27,57,29,99,33,7,106,91,348,28, %U A088577 59,22,71,103,16,12,215,395,67,112,58,769,31,49,23,167,69,2,51,32,300,30,124 %N A088577 Position of the first location of n in the digits of phi = 1.61803398874989.... %H A088577 T. D. Noe, <a href="/A088577/b088577.txt">Table of n, a(n) for n = 0..10000</a> %H A088577 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConstantDigitScanning.html">Constant Digit Scanning</a> %H A088577 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldenRatioDigits.html">Golden Ratio Digits</a> %e A088577 The first 0 is in the 5th position of the digits of Phi, so 5 is the first entry in the sequence. %t A088577 With[{phistr = StringDrop[ToString[N[GoldenRatio, 1000]], {2, 2}]}, Table[ StringPosition[phistr, ToString[n], 1][[1, 1]], {n, 0, 70}]] (* _Harvey P. Dale_, Sep 17 2011 *) %o A088577 (PARI) trajphidigitsd(n,m) = { default(realprecision,6000); p = (sqrt(5)+1)/2*10^5000; v = Vec(Str(p)); for(d=0,m, for(x=1,n, if(d<10, y = eval(v[x]), if(d<100, y = eval(v[x])*10 + eval(v[x+1]), if(d<1000, y = eval(v[x])*100 + eval(v[x+1])*10 + eval(v[x+2]), y = eval(v[x])*1000 + eval(v[x+1])*100 + eval(v[x+2])*10 + eval(v[x+3]) ); ); ); if(y == d,print1(x",");break); ); ) } %Y A088577 Cf. A001622 (decimal expansion of phi). %Y A088577 Cf. A032445 (positions in Pi), A051238 (positions in e). %K A088577 nonn,base %O A088577 0,1 %A A088577 _Cino Hilliard_, Nov 19 2003