cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088584 Primes of the form n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=3.

This page as a plain text file.
%I A088584 #14 Mar 26 2025 16:32:48
%S A088584 103,312088729,9955641160957,163142317702973500798039087,
%T A088584 327058383882861814163660125754017,
%U A088584 67973813526967723994124686175157751059,545249446055539622797498212423248888694512551610580463
%N A088584 Primes of the form n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=3.
%C A088584 Sum of reciprocals = 0.009708741068395080316898549713.. Are these primes infinite?
%C A088584 The next term (a(8)) has 148 digits. - _Harvey P. Dale_, Dec 15 2018
%H A088584 Michel Marcus, <a href="/A088584/b088584.txt">Table of n, a(n) for n = 1..8</a>
%e A088584 3*3^3 + 2*3^2 + 3 + 1 = 103.
%t A088584 Select[Accumulate[Join[{1},Table[n*3^n,{n,200}]]],PrimeQ] (* _Harvey P. Dale_, Dec 15 2018 *)
%o A088584 (PARI) trajpolyp(n1,k) = { s=0; for(x1=0,n1, y1 = polypn2(k,x1); if(isprime(y1),print1(y1","); s+=1.0/y1; ) ); print(); print(s) }
%o A088584 polypn2(n,p) = { x=n; y=1; for(m=0,p, y=y+m*x^m; ); return(y) }
%Y A088584 Cf. A055469, A088579, A088583.
%K A088584 nonn
%O A088584 1,1
%A A088584 _Cino Hilliard_, Nov 20 2003
%E A088584 More terms from _Harvey P. Dale_, Dec 15 2018