cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088592 Let p be the n-th 4k+3 prime (A002145), g be any primitive root of p. The mapping x->g^x mod p gives a permutation of {1,2,...,p-1}. a(n) is 0 if the permutation is even for each g, 1 if odd for each g.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Joseph Lewittes (jlewittes(AT)optonline.net), Nov 20 2003

Keywords

Comments

For each 4k+1 prime, half of the permutations are even, half are odd.

Examples

			a(2)=0 because x->g^x mod 7 gives an even permutation for each primitive root of 7. For p.r.=3, the cycles are (1 3 6)(2)(4)(5).
a(5)=1 because x->g^x mod 23 gives an odd permutation for each primitive root of 23. For p.r.=5, the cycles are (1 5 20 12 18 6 8 16 3 10 9 11 22)(2)(4)(7 17 15 19)(13 21 14).
		

Crossrefs

Extensions

Edited by Don Reble, Jul 31 2006