A088592 Let p be the n-th 4k+3 prime (A002145), g be any primitive root of p. The mapping x->g^x mod p gives a permutation of {1,2,...,p-1}. a(n) is 0 if the permutation is even for each g, 1 if odd for each g.
1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1
Keywords
Examples
a(2)=0 because x->g^x mod 7 gives an even permutation for each primitive root of 7. For p.r.=3, the cycles are (1 3 6)(2)(4)(5). a(5)=1 because x->g^x mod 23 gives an odd permutation for each primitive root of 23. For p.r.=5, the cycles are (1 5 20 12 18 6 8 16 3 10 9 11 22)(2)(4)(7 17 15 19)(13 21 14).
Extensions
Edited by Don Reble, Jul 31 2006
Comments