This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088639 #21 Feb 11 2021 19:21:51 %S A088639 2,11,223,3331,44449,555557,66666629,777777701,888888883,99999999907, %T A088639 1010101010101010101039,11111111111111111111111, %U A088639 12121212121212121212121223,1313131313131313131313131301,141414141414141414141414141497,15151515151515151515151515151501 %N A088639 Smallest prime beginning with at least n n's (in decimal notation). %H A088639 M. F. Hasler, <a href="/A088639/b088639.txt">Table of n, a(n) for n=0..100</a> %p A088639 a:= proc(n) local d, h, s; %p A088639 s:= parse(cat(0, n$n)); %p A088639 for d from 0 do %p A088639 for h to 10^d-1 do %p A088639 if isprime(s+h) then return s+h fi %p A088639 od: %p A088639 s:= s*10; %p A088639 od %p A088639 end: %p A088639 seq(a(n), n=0..16); # _Alois P. Heinz_, Feb 11 2021 %o A088639 (PARI) A088639(n)={ local(p=10^#Str(n),d=1); n*=(p^n-1)/(p-1); until( (d*=10)*(n+1)>p=nextprime(n*d), );p} /* _M. F. Hasler_, Jan 13 2009 */ %o A088639 (Python) %o A088639 from sympy import isprime %o A088639 def a(n): %o A088639 if n == 0: return 2 %o A088639 nns, i, pow10 = int(str(n)*n), 1, 1 %o A088639 while True: %o A088639 i = 1 %o A088639 while i < pow10: %o A088639 t = nns * pow10 + i %o A088639 if isprime(t): return t %o A088639 i += 2 %o A088639 pow10 *= 10 %o A088639 print([a(n) for n in range(16)]) # _Michael S. Branicky_, Feb 11 2021 %Y A088639 Cf. A088640. See A068120 for another version. See also A065584 - A065592. %K A088639 base,easy,nonn %O A088639 0,1 %A A088639 _Amarnath Murthy_, Oct 27 2003 %E A088639 More terms from _Ray Chandler_, Nov 01 2003 %E A088639 More cross-references and initial term added by _M. F. Hasler_, Jan 13 2009