This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088725 #24 Jun 14 2022 02:27:48 %S A088725 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,28,29,31, %T A088725 32,33,34,35,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61, %U A088725 62,63,64,65,67,68,69,70,71,73,74,75,76,77,79,81,82,83,85,86,87,88,89,91 %N A088725 Numbers having no divisors d>1 such that also d+1 is a divisor. %C A088725 Complement of A088723. %C A088725 Union of A132895 and A005408, the odd numbers. - _Ray Chandler_, May 29 2008 %C A088725 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 9, 79, 778, 7782, 77813, 778055, 7780548, 77805234, 778052138, 7780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.77805... . - _Amiram Eldar_, Jun 14 2022 %F A088725 A088722(a(n)) = 0. %e A088725 From _Gus Wiseman_, Oct 16 2019: (Start) %e A088725 The sequence of terms together with their divisors > 1 begins: %e A088725 1: {} %e A088725 2: {2} %e A088725 3: {3} %e A088725 4: {2,4} %e A088725 5: {5} %e A088725 7: {7} %e A088725 8: {2,4,8} %e A088725 9: {3,9} %e A088725 10: {2,5,10} %e A088725 11: {11} %e A088725 13: {13} %e A088725 14: {2,7,14} %e A088725 15: {3,5,15} %e A088725 16: {2,4,8,16} %e A088725 17: {17} %e A088725 19: {19} %e A088725 21: {3,7,21} %e A088725 22: {2,11,22} %e A088725 23: {23} %e A088725 25: {5,25} %e A088725 (End) %t A088725 Select[Range[100],FreeQ[Differences[Rest[Divisors[#]]],1]&] (* _Harvey P. Dale_, Sep 16 2017 *) %o A088725 (PARI) isok(n) = {my(d=setminus(divisors(n), [1])); #setintersect(d, apply(x->x+1, d)) == 0;} \\ _Michel Marcus_, Oct 28 2019 %Y A088725 Positions of 0's and 1's in A129308. %Y A088725 Positions of 0's and 1's in A328457 (also). %Y A088725 Numbers whose divisors (including 1) have no non-singleton runs are A005408. %Y A088725 The number of runs of divisors of n is A137921(n). %Y A088725 The longest run of divisors of n has length A055874(n). %Y A088725 Cf. A000005, A027750, A060680, A088722, A088723 (complement), A088724, A088726, A328166, A328450. %K A088725 nonn %O A088725 1,2 %A A088725 _Reinhard Zumkeller_, Oct 12 2003 %E A088725 Extended by _Ray Chandler_, May 29 2008