This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088732 #27 Feb 16 2025 08:32:51 %S A088732 2,3,5,7,19,11,13,23,17,19,43,23,103,41,29,31,67,53,37,59,41,43,137, %T A088732 47,149,103,53,83,173,59,61,127,131,67,139,71,73,113,233,79,163,83, %U A088732 257,131,89,137,281,191,97,149,101,103,211,107,109,167,113,173,353,179 %N A088732 First prime in the arithmetic progression n+k*(n+1) with k>0. %H A088732 T. D. Noe, <a href="/A088732/b088732.txt">Table of n, a(n) for n = 0..10000</a> %H A088732 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletsTheorem.html">Dirichlet's Theorem</a> %H A088732 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LinniksTheorem.html">Linnik's Theorem</a> %H A088732 Wikipedia, <a href="http://en.wikipedia.org/wiki/Linnik%27s_theorem">Linnik's theorem</a> %H A088732 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %e A088732 For n=10, the progression starts: 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, etc., 43 is the first prime: a(10)=43. %t A088732 Table[k = 1; While[p = n + k*(n + 1); ! PrimeQ[p], k++]; p, {n, 0, 100}] (* _Frank M Jackson_, Oct 20 2011 *) %o A088732 (Haskell) %o A088732 a088732 n = head [q | q <- [2 * n + 1, 3 * n + 2 ..], a010051' q == 1] %o A088732 -- _Reinhard Zumkeller_, Oct 01 2014 %o A088732 (Python) %o A088732 from itertools import accumulate, repeat %o A088732 from sympy import isprime %o A088732 def A088732(n): return next(m for m in accumulate(repeat(n+1),initial=(n<<1)+1) if isprime(m)) # _Chai Wah Wu_, Aug 02 2023 %Y A088732 Cf. A088733. %Y A088732 Cf. A010051. %K A088732 nonn %O A088732 0,1 %A A088732 _Reinhard Zumkeller_, Oct 12 2003