This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088749 #18 Mar 11 2023 08:43:28 %S A088749 -3,-1,1,3,9,11,17,23,29,35,41,47,53,59,69,75,81,91,97,103,113,123, %T A088749 129,135,145,155,161,171,181,187,197,207,217,223,237,247,253,263,273, %U A088749 283,293,307,313,323,329,343,353,359,373,383,393,403,417,423,437,451,457,467,481,491,501,511,525,535,545,559,569 %N A088749 Numbers of the lines Im zeta(sigma + i t)=0 that escape to the right. %C A088749 This sequence contains important information about the graphics of the lines Re zeta(s)=0 and Im zeta(s)=0, where zeta(s) is the Riemann zeta function. Only the first two terms are negative. It is an increasing sequence. The values of this sequence alternatively are congruent to 1 or 3 (mod 4). %D A088749 J. van de Lune, Some observations concerning the zero-curves of the Real and imaginary parts of Riemann's zeta function, Afdeling Zuivere Wiskunde [Department of Pure Mathematics], 201. Mathematisch Centrum, Amsterdam, 1983. i+25 pp %D A088749 A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann., Vol. 110 (1935), pp. 514-521 %D A088749 Albert A. Utzinger, Die reellen Züge der Riemann'schen Zetafunktionen, Zürich Univ. Phil. Dissertation, Leemann, 1934. %H A088749 J. Arias-de-Reyna, <a href="https://arxiv.org/abs/math/0309433">X-Ray of Riemann zeta-function</a>, arXiv:math/0309433 [math.NT] (2003), 42 p. %e A088749 a(4)=3 because the line number 3, that pass for the second nontrivial zero of the zeta function, is the fourth parallel line that goes to infinity to the right of the s-plane. %Y A088749 Cf. A088750. %K A088749 hard,sign %O A088749 1,1 %A A088749 _Juan Arias-de-Reyna_, Oct 14 2003