This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088809 #24 Feb 16 2025 08:32:51 %S A088809 0,0,0,1,3,10,27,67,154,350,763,1638,3450,7191,14831,30398,61891, %T A088809 125557,253841,511818,1029863,2069341,4153060,8327646,16687483, %U A088809 33422562,66916342,133936603,268026776,536277032,1072886163,2146245056,4293187682,8587371116 %N A088809 Number of subsets of {1, ..., n} that are not sum-free. %C A088809 a(n) = 2^n - A085489(n); a non-sum-free subset contains at least one subset {u,v, w} with w=u+v. %C A088809 A variation of binary sum-full sets where parts cannot be re-used, this sequence counts subsets of {1..n} with an element equal to the sum of two distinct others. The complement is counted by A085489. The non-binary version is A364534. For re-usable parts we have A093971. - _Gus Wiseman_, Aug 10 2023 %H A088809 Fausto A. C. Cariboni, <a href="/A088809/b088809.txt">Table of n, a(n) for n = 0..75</a> %H A088809 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sum-FreeSet.html">Sum-Free Set</a> %H A088809 Reinhard Zumkeller, <a href="/A088808/a088808.txt">Illustration of initial terms</a> %e A088809 From _Gus Wiseman_, Aug 10 2023: (Start) %e A088809 The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8). %e A088809 The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7). %e A088809 The a(1) = 0 through a(5) = 10 sets: %e A088809 . . {1,2,3} {1,2,3} {1,2,3} %e A088809 {1,3,4} {1,3,4} %e A088809 {1,2,3,4} {1,4,5} %e A088809 {2,3,5} %e A088809 {1,2,3,4} %e A088809 {1,2,3,5} %e A088809 {1,2,4,5} %e A088809 {1,3,4,5} %e A088809 {2,3,4,5} %e A088809 {1,2,3,4,5} %e A088809 (End) %t A088809 Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}] (* _Gus Wiseman_, Aug 10 2023 *) %Y A088809 The complement is counted by A085489, differences A364755. %Y A088809 With re-usable parts we have A093971, for partitions A363225. %Y A088809 The complement for partitions is A236912: %Y A088809 non-binary A237667, %Y A088809 ranks A364461, %Y A088809 strict A364533. %Y A088809 The version for partitions is A237113: %Y A088809 non-binary A237668, %Y A088809 ranks A364462, %Y A088809 strict A364670. %Y A088809 The non-binary version is A364534, complement A151897. %Y A088809 First differences are A364756. %Y A088809 Cf. A000079, A007865, A050291, A051026, A103580, A288728, A326020, A326080, A326083, A364272, A364349. %K A088809 nonn %O A088809 0,5 %A A088809 _Reinhard Zumkeller_, Oct 19 2003 %E A088809 Terms a(32) and beyond from _Fausto A. C. Cariboni_, Sep 28 2020