cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088815 Expansion of e.g.f. (1-x)^(-1/(1+log(1-x))).

This page as a plain text file.
%I A088815 #22 May 23 2022 09:11:09
%S A088815 1,1,4,24,190,1860,21638,291158,4443556,75779580,1427272032,
%T A088815 29409572808,657829667328,15868725580344,410543007882408,
%U A088815 11336582934052104,332736828827893968,10342443317857993680,339343476195341474688
%N A088815 Expansion of e.g.f. (1-x)^(-1/(1+log(1-x))).
%H A088815 G. C. Greubel, <a href="/A088815/b088815.txt">Table of n, a(n) for n = 0..410</a>
%F A088815 a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A000262(k). - _Vladeta Jovovic_, Nov 26 2003
%F A088815 a(n) ~ n! * exp(n + 2*sqrt(n)/sqrt(exp(1)-1) + 1/(2*(exp(1)-1)) - 1/2) / (2*sqrt(Pi) * (exp(1)-1)^(n+1/4) * n^(3/4)). - _Vaclav Kotesovec_, May 04 2015
%F A088815 a(0) = 1; a(n) = Sum_{k=1..n} A007840(k) * binomial(n-1,k-1) * a(n-k). - _Seiichi Manyama_, May 23 2022
%t A088815 With[{nn=20},CoefficientList[Series[(1-x)^(-1/(1+Log[1-x])), {x,0,nn}], x]Range[0,nn]!] (* _Harvey P. Dale_, Nov 29 2011 *)
%o A088815 (PARI) x='x+O('x^25); Vec(serlaplace((1-x)^(-1/(1+log(1-x))))) \\ _G. C. Greubel_, Feb 16 2017
%o A088815 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v; \\ _Seiichi Manyama_, May 23 2022
%Y A088815 Row sums of A079640.
%Y A088815 Cf. A000262, A007840, A088819.
%K A088815 nonn
%O A088815 0,3
%A A088815 _Vladeta Jovovic_, Nov 22 2003