This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088819 #24 May 23 2022 09:11:13 %S A088819 1,1,2,6,22,100,518,3122,20676,154524,1238952,11030448,103376832, %T A088819 1068000024,11407673496,134352996744,1603035004368,21276244952784, %U A088819 278535036773856,4141886572833888,58405909554175776,973789956270781056,14462380128843907680 %N A088819 Expansion of e.g.f. (1+x)^(1/(1-log(1+x))). %C A088819 a(34) is the first negative term. %H A088819 Georg Fischer, <a href="/A088819/b088819.txt">Table of n, a(n) for n = 0..100</a> %F A088819 a(n) = Sum_{k=0..n} Stirling1(n, k)*A000262(k). - _Vladeta Jovovic_, Nov 26 2003 %F A088819 a(0) = 1; a(n) = Sum_{k=1..n} A006252(k) * binomial(n-1,k-1) * a(n-k). - _Seiichi Manyama_, May 23 2022 %t A088819 CoefficientList[Series[(1+x)^(1/(1-Log[1+x])), {x, 0, 100}], x]* Range[0, 100]! (* _Georg Fischer_, Feb 17 2019 *) %o A088819 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v; \\ _Seiichi Manyama_, May 23 2022 %Y A088819 Row sums of A079639. %Y A088819 Cf. A000262, A006252. %K A088819 sign %O A088819 0,3 %A A088819 _Vladeta Jovovic_, Nov 22 2003