This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088827 #35 Jul 09 2023 03:15:46 %S A088827 2,4,8,16,18,32,36,50,64,72,98,100,128,144,162,196,200,242,256,288, %T A088827 324,338,392,400,450,484,512,576,578,648,676,722,784,800,882,900,968, %U A088827 1024,1058,1152,1156,1250,1296,1352,1444,1458,1568,1600,1682,1764,1800,1922 %N A088827 Even numbers with odd abundance: even squares or two times squares. %C A088827 Sigma(k)-2k is odd means that sigma(k) is also odd. %C A088827 Odd numbers with odd abundance are in A016754. Odd numbers with even abundance are in A088828. Even numbers with even abundance are in A088829. %H A088827 Michael De Vlieger, <a href="/A088827/b088827.txt">Table of n, a(n) for n = 1..10000</a> %F A088827 Conjecture: a(n) = ((2*r) + 1)^2 * 2^(c+1) where r and c are the corresponding row and column of n in the table format of A191432, where the first row and column are 0. - _John Tyler Rascoe_, Jul 12 2022 %F A088827 Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003). - _Amiram Eldar_, Jul 09 2023 %e A088827 From _Michael De Vlieger_, May 14 2017: (Start) %e A088827 4 is a term since it is even and the sum of its divisors {1,2,4} = 7 - 2(4) = -1 is odd. It is an even square. %e A088827 18 is a term since it is even and the sum of its divisors {1,2,3,6,9,18} = 39 - 2(18) = 3 is odd. It is 2 times a square, i.e., 2(9). (End) %t A088827 Do[s=DivisorSigma[1, n]-2*n; If[OddQ[s]&&!OddQ[n], Print[{n, s}]], {n, 1, 1000}] %t A088827 (* Second program: *) %t A088827 Select[Range[2, 2000, 2], OddQ[DivisorSigma[1, #] - 2 #] &] (* _Michael De Vlieger_, May 14 2017 *) %o A088827 (Python) %o A088827 from itertools import count, islice %o A088827 from sympy.ntheory.primetest import is_square %o A088827 def A088827_gen(startvalue=2): # generator of terms >= startvalue %o A088827 return filter(lambda n:is_square(n) or is_square(n>>1),count(max(startvalue+(startvalue&1),2),2)) %o A088827 A088827_list = list(islice(A088827_gen(),30)) # _Chai Wah Wu_, Jul 06 2023 %Y A088827 Cf. A016754, A088828, A088829, A111003, A191432. %K A088827 nonn,easy %O A088827 1,1 %A A088827 _Labos Elemer_, Oct 28 2003