A088841 Numerator of the quotient sigma(7*n)/sigma(n).
8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 400, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Numerator[DivisorSigma[1, 7*n]/DivisorSigma[1, n]], {n, 1, 128}]
-
PARI
a(n) = numerator(sigma(7*n)/sigma(n)); \\ Amiram Eldar, Mar 22 2024
Formula
From Amiram Eldar, Mar 22 2024: (Start)
Sum_{k=1..n} a(k) ~ (7/log(7))*n*log(n) + (9/2 + 7*(gamma-1)/log(7))*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A088842(k) = 1 + 36 * Sum_{k>=1} 1/(7^k-1) = 7.87276224676... . (End)