cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088855 Triangle read by rows: number of symmetric Dyck paths of semilength n with k peaks.

This page as a plain text file.
%I A088855 #65 Dec 23 2024 14:53:42
%S A088855 1,1,1,1,1,1,1,2,2,1,1,2,4,2,1,1,3,6,6,3,1,1,3,9,9,9,3,1,1,4,12,18,18,
%T A088855 12,4,1,1,4,16,24,36,24,16,4,1,1,5,20,40,60,60,40,20,5,1,1,5,25,50,
%U A088855 100,100,100,50,25,5,1,1,6,30,75,150,200,200,150,75,30,6,1,1,6,36,90,225,300,400,300,225,90,36,6,1
%N A088855 Triangle read by rows: number of symmetric Dyck paths of semilength n with k peaks.
%C A088855 Rows 2, 4, 6, ... give A088459.
%C A088855 Diagonal sums are in A088518(n-1). - _Philippe Deléham_, Jan 04 2009
%C A088855 Row sums are in A001405(n). - _Philippe Deléham_, Jan 04 2009
%C A088855 Subtriangle (1 <= k <= n) of triangle T(n,k), 0 <= k <= n, read by rows, given by A101455 DELTA A056594 := [0,1,0,-1,0,1,0,-1,0,1,0,-1,0,...] DELTA [1,0,-1,0,1,0,-1,0,1,0,-1,0,1,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 03 2009
%C A088855 Also, number of symmetric noncrossing partitions of an n-set with k blocks. - _Andrew Howroyd_, Nov 15 2017
%C A088855 From _Roger Ford_, Oct 17 2018: (Start)
%C A088855 T(n,k) = t(n+2,d) where t(n,d) is the number of different semi-meander arch depth listings with n top arches and with d the depth of the deepest embedded arch.
%C A088855 Examples:    /\         semi-meander with 5 top arches
%C A088855             //\\   /\   2 arches are at depth=0 (no covering arches)
%C A088855            ///\\\ //\\  2 arches are at depth=1 (1 covering arch)
%C A088855       (0)(1)(2)         1 arch is at depth=2 (2 covering arches)
%C A088855        2, 2, 1 is the listing for this t(5,2)
%C A088855              /\      semi-meander with 5 top arches
%C A088855             /  \     (0)(1)
%C A088855      /\ /\ //\/\\     3, 2  is the listing for this t(5,1)
%C A088855 a(6,5) = t(8,5)= 3 {2,1,1,1,2,1; 2,1,2,1,1,1; 3,1,1,1,1,1} (End)
%H A088855 Andrew Howroyd, <a href="/A088855/b088855.txt">Table of n, a(n) for n = 1..1275</a>
%H A088855 Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, <a href="https://arxiv.org/abs/2010.11157">Refined Catalan and Narayana cyclic sieving</a>, arXiv:2010.11157 [math.CO], 2020.
%H A088855 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
%H A088855 Hyunsoo Cho, JiSun Huh, and Jaebum Sohn, <a href="https://arxiv.org/abs/2001.06651">The (s, s + d, ..., s + pd)-core partitions and the rational Motzkin paths</a>, arXiv:2001.06651 [math.CO], 2020.
%H A088855 Johann Cigler, <a href="http://arxiv.org/abs/1501.04750">Some remarks and conjectures related to lattice paths in strips along the x-axis</a>, arXiv:1501.04750 [math.CO], 2015-2016.
%H A088855 Johann Cigler, <a href="https://arxiv.org/abs/2103.01652">Pascal triangle, Hoggatt matrices, and analogous constructions</a>, arXiv:2103.01652 [math.CO], 2021.
%H A088855 Nicolas Crampe, Julien Gaboriaud, and Luc Vinet, <a href="https://arxiv.org/abs/2105.01086">Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series</a>, arXiv:2105.01086 [math.RT], 2021.
%H A088855 L. Poulain d'Andecy, <a href="https://arxiv.org/abs/2304.00850">Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics</a>, arXiv:2304.00850 [math.RT], 2023. See p. 64.
%H A088855 Vladimir Shevelev, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2017-November/018114.html">Several remarks on A088855</a>, Seqfan thread, Nov 19 2017.
%F A088855 T(n, k) = binomial(floor(n'), floor(k'))*binomial(ceiling(n'), ceiling(k')), where n' = (n-1)/2, k' = (k-1)/2.
%F A088855 G.f.: 2*u/(u*v + sqrt(x*y*u*v)) - 1, where x = 1+z+t*z, y = 1+z-t*z, u = 1-z+t*z, v = 1-z-t*z.
%F A088855 Triangle T(n,k), 0 <= k <= n, given by A101455 DELTA A056594 begins: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,2,1; 0,1,2,4,2,1; 0,1,3,6,6,3,1; 0,1,3,9,9,9,3,1; ... - _Philippe Deléham_, Jan 03 2009
%F A088855 From _G. C. Greubel_, Apr 08 2022: (Start)
%F A088855 T(n, n-k+1) = T(n, k).
%F A088855 T(2*n-1, n) = A018224(n-1), n >= 1.
%F A088855 T(2*n, n) = A005566(n-1), n >= 1. (End)
%e A088855 Triangle begins:
%e A088855   1;
%e A088855   1,  1;
%e A088855   1,  1,  1;
%e A088855   1,  2,  2,   1;
%e A088855   1,  2,  4,   2,   1;
%e A088855   1,  3,  6,   6,   3,    1;
%e A088855   1,  3,  9,   9,   9,    3,    1;
%e A088855   1,  4, 12,  18,  18,   12,    4,    1;
%e A088855   1,  4, 16,  24,  36,   24,   16,    4,    1;
%e A088855   1,  5, 20,  40,  60,   60,   40,   20,    5,    1;
%e A088855   1,  5, 25,  50, 100,  100,  100,   50,   25,    5,    1;
%e A088855   1,  6, 30,  75, 150,  200,  200,  150,   75,   30,    6,   1;
%e A088855   1,  6, 36,  90, 225,  300,  400,  300,  225,   90,   36,   6,   1;
%e A088855   1,  7, 42, 126, 315,  525,  700,  700,  525,  315,  126,  42,   7,  1;
%e A088855   1,  7, 49, 147, 441,  735, 1225, 1225, 1225,  735,  441, 147,  49,  7, 1;
%e A088855   1,  8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1;
%e A088855   ...
%e A088855 a(6,2)=3 because we have UUUDDDUUUDDD, UUUUDDUUDDDD, UUUUUDUDDDDD, where
%e A088855 U=(1,1), D=(1,-1).
%t A088855 T[n_, k_] := Binomial[Quotient[n-1, 2], Quotient[k-1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]];
%t A088855 Table[T[n, k], {n,13}, {k,n}]//Flatten (* _Jean-François Alcover_, Jun 07 2018 *)
%o A088855 (PARI) T(n,k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ _Andrew Howroyd_, Nov 15 2017
%o A088855 (Magma) [(&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 08 2022
%o A088855 (Sage)
%o A088855 def A088855(n,k): return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
%o A088855 flatten([[A088855(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Apr 08 2022
%Y A088855 Cf. A005566, A018224, A056594, A084938, A088459, A101455, A209612, A247644.
%Y A088855 Cf. A001405 (row sums), A088459, A088518 (diagonal sums).
%Y A088855 Column 2 is A008619, column 3 is A002620, column 4 is A028724, column 5 is A028723, column 6 is A028725, column 7 is A331574.
%K A088855 nonn,tabl
%O A088855 1,8
%A A088855 _Emeric Deutsch_, Nov 24 2003
%E A088855 Keyword:tabl added _Philippe Deléham_, Jan 25 2010