This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088880 #21 Jan 08 2016 06:15:53 %S A088880 1,1,2,2,5,4,8,6,12,10,16,13,25,18,28,25,40,32,51,40,62,51,76,62,99, %T A088880 77,112,92,138,109,165,130,189,153,220,178,267,208,292,240,347,274, %U A088880 397,315,445,361,512,407,591,464,647,524,746,588,830,664,928,746,1034 %N A088880 Number of different values of A000005(m) when A056239(m) is equal to n. %C A088880 Number of distinct values of Product_{k=1..n} (m(k,P)+1) where m(k,P) is multiplicity of part k in partition P, as P ranges over all partitions of n. - _Vladeta Jovovic_, May 24 2008 %H A088880 Alois P. Heinz, <a href="/A088880/b088880.txt">Table of n, a(n) for n = 0..222</a> %p A088880 multipl := proc(P,p) %p A088880 local a; %p A088880 a := 0 ; %p A088880 for el in P do %p A088880 if el = p then %p A088880 a := a+1 ; %p A088880 end if; %p A088880 end do; %p A088880 a ; %p A088880 end proc: %p A088880 A088880 := proc(n) %p A088880 local pro,pa,m,p; %p A088880 pro := {} ; %p A088880 for pa in combinat[partition](n) do %p A088880 m := 1 ; %p A088880 for p from 1 to n do %p A088880 m := m*(1+multipl(pa,p)) ; %p A088880 end do: %p A088880 pro := pro union {m} ; %p A088880 end do: %p A088880 nops(pro) ; %p A088880 end proc: # _R. J. Mathar_, Sep 27 2011 %p A088880 # second Maple program %p A088880 b:= proc(n, i) option remember; `if`(n=0 or i<2, {n+1}, %p A088880 {seq(map(p->p*(j+1), b(n-i*j, i-1))[], j=0..n/i)}) %p A088880 end: %p A088880 a:= n-> nops(b(n, n)): %p A088880 seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 09 2012 %t A088880 b[n_, i_] := b[n, i] = If[n==0 || i<2, {n+1}, Table[b[n-i*j, i-1]*(j+1), {j, 0, n/i}] // Flatten // Union]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jan 08 2016, after _Alois P. Heinz_ *) %Y A088880 Cf. A088314, A215366. %K A088880 easy,nonn %O A088880 0,3 %A A088880 _Naohiro Nomoto_, Nov 28 2003