This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088883 #21 Jun 08 2025 16:15:42 %S A088883 7,19,97,109,151,163,181,193,547,709,727,733,991,1039,1093,1279,1447, %T A088883 1453,1567,1621,1657,1669,1699,1723,1867,5077,5179,5209,5281,5323, %U A088883 5419,5503,5563,5581,5653,5821,5857,5881,7057,7207,7219,7333,7351,7507,7537 %N A088883 Primes which when concatenated with their reverse and incremented by 2 yield a new prime. %C A088883 It appears that if concat(p,reverse(p))+2 is prime, then concat(p,reverse(p))-2 is not and vice versa. This was tested for the first 60000 primes. %C A088883 Conjecture: All these primes are of the form 6*k + 1. - _Davide Rotondo_, Apr 29 2025 %H A088883 Harvey P. Dale, <a href="/A088883/b088883.txt">Table of n, a(n) for n = 1..1000</a> %e A088883 109 is a term because (i) 109 is prime and (ii) when 109 is concatenated with its reverse (901) + 2, the result (109903) is prime. %p A088883 filter:= proc(n) local L,d,i,x; %p A088883 if not isprime(n) then return false fi; %p A088883 L:= convert(n,base,10); %p A088883 d:= nops(L); %p A088883 x:= add(L[-i]*(10^(i-1)+10^(2*d-i)),i=1..d)+2; %p A088883 isprime(x) %p A088883 end proc; %p A088883 select(filter, [seq(i,i=7 .. 10^4,6)]); # _Robert Israel_, Apr 29 2025 %t A088883 crpQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[FromDigits[ Join[ idn, Reverse[ idn]]]+2]]; Select[Prime[Range[1000]],crpQ] (* _Harvey P. Dale_, Apr 28 2014 *) %Y A088883 Subsequence of A002476. %Y A088883 Cf. A067087 (concatenation of n-th prime and its reverse), A088884 (with decremented rather than incremented). %K A088883 base,nonn %O A088883 1,1 %A A088883 _Chuck Seggelin_, Oct 21 2003