This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088896 #11 Feb 16 2025 08:32:51 %S A088896 125,1000,2197,3375,4913,8000,15625,17576,24389,27000,39304,42875, %T A088896 50653,59319,64000,68921,91125,125000,132651,140608,148877,166375, %U A088896 195112,216000,226981,274625,314432,343000,389017,405224,421875,474552,512000 %N A088896 Length of longest integral ladder that can be moved horizontally around the right angled corner where two hallway corridors of integral widths meet. %C A088896 The set of values for the integral-widths corridors and longest ladder are merely the cubes of Pythagorean triples, viz. (A046083, A046084, A009000). %C A088896 The corridors' widths may be parametrically expressed as d*(sin x)^3 and d*(cos x)^3, for a longest ladder length d making an angle x with one of the corridors. %C A088896 A given ladder, however, is maximum-corner-bending for a family of infinite pairs of perpendicular corridor widths and that the envelope of the maximum bending positions is that of a sliding rod against the outer wall, which is a branch of an astroid or four-cusped hypocycloid. %D A088896 E. Mendelson, 3000 Solved Problems in Calculus, Chapter 16 Problem 16.56 pp. 131, Mc Graw-Hill 1988. %D A088896 M. Spiegel, Theory and Problems of Advanced Calculus, Chapter 4 Problem 40 pp. 75, Mc Graw-Hill 1974. %H A088896 C. Azeredo, <a href="http://www.mtm.ufsc.br/~azeredo/calculos/Acalculo/x/aplicderiv/ladder.html">The Ladder Problem</a> %H A088896 L. Husch and M. Szapiel, <a href="http://archives.math.utk.edu/visual.calculus/3/applications.2">The Longest Ladder</a> %H A088896 M. Kantor, Knox College, <a href="http://math.knox.edu/puzzles/Catalog-Old/current_puzzle.html">Puzzle of the Week</a> %H A088896 J. J. O'Connor and E. R. Robertson, <a href="http://www-groups.dcs.st-and.ac.uk/~history/Curves/Astroid.html">Astroid</a> %H A088896 T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/ladder">longest ladder</a> %H A088896 D. Sjerve, <a href="http://www.math.ubc.ca/~sjer/math100sec101/sols7.pdf">Solution to problem No.3</a> %H A088896 W. H. Steeb, <a href="http://issc.rau.ac.za/appliedmaths/tgw3a/png/tgw3a6s.html">Solved Problem</a> %H A088896 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Astroid.html">Astroid</a> %F A088896 a(n)=d^3, where d=A009003(n). %K A088896 nonn %O A088896 1,1 %A A088896 _Lekraj Beedassy_, Nov 28 2003