cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088896 Length of longest integral ladder that can be moved horizontally around the right angled corner where two hallway corridors of integral widths meet.

This page as a plain text file.
%I A088896 #11 Feb 16 2025 08:32:51
%S A088896 125,1000,2197,3375,4913,8000,15625,17576,24389,27000,39304,42875,
%T A088896 50653,59319,64000,68921,91125,125000,132651,140608,148877,166375,
%U A088896 195112,216000,226981,274625,314432,343000,389017,405224,421875,474552,512000
%N A088896 Length of longest integral ladder that can be moved horizontally around the right angled corner where two hallway corridors of integral widths meet.
%C A088896 The set of values for the integral-widths corridors and longest ladder are merely the cubes of Pythagorean triples, viz. (A046083, A046084, A009000).
%C A088896 The corridors' widths may be parametrically expressed as d*(sin x)^3 and d*(cos x)^3, for a longest ladder length d making an angle x with one of the corridors.
%C A088896 A given ladder, however, is maximum-corner-bending for a family of infinite pairs of perpendicular corridor widths and that the envelope of the maximum bending positions is that of a sliding rod against the outer wall, which is a branch of an astroid or four-cusped hypocycloid.
%D A088896 E. Mendelson, 3000 Solved Problems in Calculus, Chapter 16 Problem 16.56 pp. 131, Mc Graw-Hill 1988.
%D A088896 M. Spiegel, Theory and Problems of Advanced Calculus, Chapter 4 Problem 40 pp. 75, Mc Graw-Hill 1974.
%H A088896 C. Azeredo, <a href="http://www.mtm.ufsc.br/~azeredo/calculos/Acalculo/x/aplicderiv/ladder.html">The Ladder Problem</a>
%H A088896 L. Husch and M. Szapiel, <a href="http://archives.math.utk.edu/visual.calculus/3/applications.2">The Longest Ladder</a>
%H A088896 M. Kantor, Knox College, <a href="http://math.knox.edu/puzzles/Catalog-Old/current_puzzle.html">Puzzle of the Week</a>
%H A088896 J. J. O'Connor and E. R. Robertson, <a href="http://www-groups.dcs.st-and.ac.uk/~history/Curves/Astroid.html">Astroid</a>
%H A088896 T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/ladder">longest ladder</a>
%H A088896 D. Sjerve, <a href="http://www.math.ubc.ca/~sjer/math100sec101/sols7.pdf">Solution to problem No.3</a>
%H A088896 W. H. Steeb, <a href="http://issc.rau.ac.za/appliedmaths/tgw3a/png/tgw3a6s.html">Solved Problem</a>
%H A088896 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Astroid.html">Astroid</a>
%F A088896 a(n)=d^3, where d=A009003(n).
%K A088896 nonn
%O A088896 1,1
%A A088896 _Lekraj Beedassy_, Nov 28 2003