cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088899 T(n, k) = number of ordered pairs of integers (x,y) with x^2/n^2 + y^2/k^2 = 1, 1 <= k <= n; triangular array, read by rows.

This page as a plain text file.
%I A088899 #25 Feb 16 2025 08:32:51
%S A088899 4,4,4,4,4,4,4,4,4,4,4,4,4,4,12,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%T A088899 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,12,4,4,4,4,12,4,4,4,4,4,4,4,4,4,4,4,4,
%U A088899 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,12,4,4,4,4,4,4,4,4,4,4
%N A088899 T(n, k) = number of ordered pairs of integers (x,y) with x^2/n^2 + y^2/k^2 = 1, 1 <= k <= n; triangular array, read by rows.
%C A088899 T(n,k) is the number of lattice points on the circumference of an ellipse with semimajor axis = n, semiminor axis = k and center = (0,0).
%H A088899 Antti Karttunen, <a href="/A088899/b088899.txt">Rows n = 1..225 of triangle, flattened</a>
%H A088899 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Ellipse.html">Ellipse</a>
%F A088899 a(n) = A088897(n) - A088898(n);
%F A088899 T(n,n) = A046109(n).
%e A088899 From _Antti Karttunen_, Nov 08 2018: (Start)
%e A088899 Triangle begins:
%e A088899 ---------------------------------------------------------------
%e A088899 k=    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A088899 ---------------------------------------------------------------
%e A088899 n= 1: 4;
%e A088899 n= 2: 4,  4;
%e A088899 n= 3: 4,  4,  4;
%e A088899 n= 4: 4,  4,  4,  4;
%e A088899 n= 5: 4,  4,  4,  4, 12;
%e A088899 n= 6: 4,  4,  4,  4,  4,  4;
%e A088899 n= 7: 4,  4,  4,  4,  4,  4,  4;
%e A088899 n= 8: 4,  4,  4,  4,  4,  4,  4,  4;
%e A088899 n= 9: 4,  4,  4,  4,  4,  4,  4,  4,  4;
%e A088899 n=10: 4,  4,  4,  4, 12,  4,  4,  4,  4, 12;
%e A088899 n=11: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
%e A088899 n=12: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
%e A088899 n=13: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4, 12;
%e A088899 n=14: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
%e A088899 n=15: 4,  4,  4,  4, 12,  4,  4,  4,  4, 12,  4,  4,  4,  4, 12;
%e A088899 ---
%e A088899 T(5,5) = 12 as there are following 12 solutions for pair (5,5): (5, 0), (4, 3), (3, 4), (0, 5), (-3, 4), (-4, 3), (-5, 0), (-4, -3), (-3, -4), (0, -5), (3, -4), (4, -3).
%e A088899 T(15,10) = 12, as there are following 12 solutions for pair (15,10): (-15,0), (-12,-6), (-12,6), (-9,-8), (-9,8), (0,-10), (0,10), (9,-8), (9,8), (12,-6), (12,6), (15,0).
%e A088899 (End)
%t A088899 T[n_, k_] := Reduce[x^2/n^2 + y^2/k^2 == 1, {x, y}, Integers] // Length;
%t A088899 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 27 2021 *)
%o A088899 (PARI)
%o A088899 up_to = 105;
%o A088899 A088899tr(n,k) = { my(s=0, t=(n^2)*(k^2)); for(x=-n,n,for(y=-k,k,if((x*x*k*k)+(y*y*n*n) == t, s++))); (s); };
%o A088899 A088899list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, if(i++ > up_to, return(v)); v[i] = A088899tr(n,k))); (v); };
%o A088899 v088899 = A088899list(up_to);
%o A088899 A088899(n) = v088899[n]; \\ _Antti Karttunen_, Nov 07 2018
%Y A088899 Cf. A046109, A088897, A088898.
%K A088899 nonn,tabl
%O A088899 1,1
%A A088899 _Reinhard Zumkeller_, Oct 21 2003