This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088924 #51 Jan 27 2025 18:51:19 %S A088924 1,18,252,3168,37512,427608,4748472,51736248,555626232,5900636088, %T A088924 62105724792,648951523128,6740563708152,69665073373368, %U A088924 716985660360312,7352870943242808,75175838489185272,766582546402667448 %N A088924 Number of "9ish numbers" with n digits. %C A088924 First difference of A016189. ("9" can be replaced by any other nonzero digit, however only the 9ish numbers are closed under lunar multiplication.) %C A088924 See A257285 - A257289 for first differences of 5^n-4^n, ..., 9^n-8^n. These also give the number of n-digit numbers whose largest digit is 5, 6, 7, 8, respectively. - _M. F. Hasler_, May 04 2015 %H A088924 Stefano Spezia, <a href="/A088924/b088924.txt">Table of n, a(n) for n = 1..950</a> %H A088924 D. Applegate, <a href="/A087061/a087061.txt">C program for lunar arithmetic and number theory</a> [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing] %H A088924 D. Applegate, M. LeBrun, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1107.1130">Dismal Arithmetic</a> [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing] %H A088924 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a> %H A088924 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (19,-90). %F A088924 a(n) = 9*10^(n-1) - 8*9^(n-1). %F A088924 G.f.: x*(1 - x)/(1 - 19*x + 90*x^2). - _Bobby Milazzo_, May 02 2014 %F A088924 a(n) = 19*a(n-1) - 90*a(n-2). - _Vincenzo Librandi_, May 04 2015 %F A088924 E.g.f.: (81*exp(10*x) - 80*exp(9*x) - 1)/90. - _Stefano Spezia_, Nov 16 2023 %e A088924 a(2) = 18 because 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 and 99 are the eighteen two-digit 9ish numbers. %p A088924 A088924:=n->9*10^(n-1) - 8*9^(n-1); seq(A088924(n), n=1..30); # _Wesley Ivan Hurt_, May 15 2014 %t A088924 Series[(x (1 - x))/(1 - 19 x + 90 x^2), {x, 0, 10}] (* _Bobby Milazzo_, May 02 2014 *) %t A088924 Table[9*10^(n - 1) - 8*9^(n - 1), {n, 30}] (* _Wesley Ivan Hurt_, May 15 2014 *) %o A088924 (PARI) a(n)=9*10^n-8*9^n \\ _M. F. Hasler_, May 04 2015 %o A088924 (Magma) [9*10^(n-1) - 8*9^(n-1): n in [1..30]]; // _Vincenzo Librandi_, May 04 2015 %o A088924 (Python) %o A088924 def A088924(n): return 9*10**(n-1)-8*9**(n-1) # _Chai Wah Wu_, Jan 27 2025 %Y A088924 Cf. A016189, A011539, A257285, A257286, A257287, A257288, A257289. %K A088924 base,easy,nonn %O A088924 1,2 %A A088924 _Marc LeBrun_, Oct 23 2003