This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088931 #8 Oct 05 2018 10:38:09 %S A088931 0,0,1,0,2,1,2,1,4,3,5,4,7,6,8,7,12,11,15,14,20,19,24,23,31,30,37,36, %T A088931 45,44,52,51,64,63,75,74,90,89,104,103,124,123,143,142,167,166,190, %U A088931 189,221,220,251,250,288,287,324,323,369,368,413,412,465,464,516,515,580 %N A088931 G.f.: Sum_{n >= 1} ( x^(2^n)/ ((1+x^(2^(n-1)))*Product_{j=0..n-1} (1-x^(2^j)) ) ). %C A088931 This is the g.f. for the number of non-squashing partitions with a repeated part, that is, A000123(n) - A088567(n). %H A088931 N. J. A. Sloane and J. A. Sellers, <a href="http://arXiv.org/abs/math.CO/0312418">On non-squashing partitions</a>, Discrete Math., 294 (2005), 259-274. %e A088931 x^2/((1 + x)*(1 - x)) + x^4/((1 + x^2)*(1 - x)*(1 - x^2)) + x^8/((1 + x^4)*(1 - x)*(1 - x^2)*(1 - x^4)) + ... %t A088931 max = 65; Sum[x^(2^n)/((1+x^(2^(n-1))) Product[1-x^(2^j), {j, 0, n-1}]), {n, 1, Log[2, max] // Ceiling}] + O[x]^(max) // CoefficientList[#, x]& (* _Jean-François Alcover_, Oct 05 2018 *) %Y A088931 Apart from initial terms, same as A088980. %K A088931 nonn %O A088931 0,5 %A A088931 _N. J. A. Sloane_, Dec 02 2003