This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088959 #46 Sep 15 2023 07:53:30 %S A088959 1,5,25,65,325,1105,5525,27625,32045,160225,801125,1185665,5928325, %T A088959 29641625,48612265,243061325,1215306625,2576450045,12882250225, %U A088959 64411251125,157163452745,785817263725,3929086318625,10215624428425,11472932050385,51078122142125 %N A088959 Lowest numbers which are d-Pythagorean decomposable, i.e., square is expressible as sum of two positive squares in more ways than for any smaller number. %C A088959 These are also the integer radii of circles around the origin that contain record numbers of lattice points. See A071383 for radii that are not necessarily integer. - _Günter Rote_, Sep 14 2023 %D A088959 R. M. Sternheimer, Additional Remarks Concerning The Pythagorean Triplets, Journal of Recreational Mathematics, Vol. 30, No. 1, pp. 45-48, 1999-2000, Baywood NY. %H A088959 Ray Chandler, <a href="/A088959/b088959.txt">Table of n, a(n) for n = 1..307</a> %e A088959 From _Petros Hadjicostas_, Jul 21 2019: (Start) %e A088959 Squares 1^2, 2^2, 3^2, and 4^2 have 0 representations as the sum of two positive squares. (Thus, A088111(1) = 0 for the number of representations of 1^2.) Thus a(1) = 1. %e A088959 Square 5^2 can be written as 3^2 + 4^2 only (here A088111(2) = 1). Thus, a(2) = 5. %e A088959 Looking at sequence A046080, we see that for 5 <= n <= 24, only n^2 = 5^2, 10^2, 13^2, 15^2, 17^2, 20^2 can be written as a sum of two positive squares (in a single way) because 5^2 = 3^2 + 4^2, 10^2 = 6^2 + 8^2, 13^2 = 5^2 + 12^2, 17^2 = 8^2 + 15^2, and 20^2 = 12^2 + 16^2. %e A088959 Since A046080(25) = 2 and A088111(3) = 2, we have that 25^2 can be written as a sum of two positive squares in two ways. Indeed, 25^2 = 7^2 + 24^2 = 15^2 + 20^2. Thus, a(3) = 25. %e A088959 For 26 <= n <= 64, we see from sequence A046080 that n^2 cannot be written in more than 2 ways as a sum of two positive squares. %e A088959 Since A046080(65) = 4, we see that 65^2 can be written as the sum of two positive squares in 4 ways. Indeed, 65^2 = 16^2 + 63^2 = 25^2 + 60^2 = 33^2 + 56^2 = 39^2 + 52^2. Thus, a(4) = 65. %e A088959 (End) %o A088959 (Python) %o A088959 from math import prod %o A088959 from sympy import isprime %o A088959 primes_congruent_1_mod_4 = [5] %o A088959 def prime_4k_plus_1(i): # the i-th prime that is congruent to 1 mod 4 %o A088959 while i>=len(primes_congruent_1_mod_4): # generate primes on demand %o A088959 n = primes_congruent_1_mod_4[-1]+4 %o A088959 while not isprime(n): n += 4 %o A088959 primes_congruent_1_mod_4.append(n) %o A088959 return primes_congruent_1_mod_4[i] %o A088959 def generate_A054994(): %o A088959 TO_DO = {(1,())} %o A088959 while True: %o A088959 radius, exponents = min(TO_DO) %o A088959 yield radius, exponents %o A088959 TO_DO.remove((radius, exponents)) %o A088959 TO_DO.update(successors(radius,exponents)) %o A088959 def successors(r,exponents): %o A088959 for i,e in enumerate(exponents): %o A088959 if i==0 or exponents[i-1]>e: %o A088959 yield (r*prime_4k_plus_1(i), exponents[:i]+(e+1,)+exponents[i+1:]) %o A088959 if exponents==() or exponents[-1]>0: %o A088959 yield (r*prime_4k_plus_1(len(exponents)), exponents+(1,)) %o A088959 n,record=0,-1 %o A088959 for radius,expo in generate_A054994(): %o A088959 num_pyt = (prod((2*e+1) for e in expo)-1)//2 %o A088959 if num_pyt>record: %o A088959 record = num_pyt %o A088959 n += 1 %o A088959 print(radius, end="") # or record, for A088111 %o A088959 if n==26: break # stop after 26 entries %o A088959 print(end=", ") %o A088959 print() # _Günter Rote_, Sep 13 2023 %Y A088959 Cf. A052199. Subsequence of A054994. Number of ways: see A088111. Where records occur in A046080. %K A088959 nonn %O A088959 1,2 %A A088959 _Lekraj Beedassy_, Dec 01 2003 %E A088959 Corrected and extended by _Ray Chandler_, Jan 12 2012 %E A088959 Name edited by _Petros Hadjicostas_, Jul 21 2019