This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A088973 #24 Mar 14 2020 13:35:27 %S A088973 5,20,25,76,51,93,61,100,176,122,207,156,89,152,249,280,44,412,178,90, %T A088973 293,270,282,374,340,157,186,121,169,913,263,235,255,597,162,406,457, %U A088973 263,418,339,221,645,161,300,133,855,1235,236,162,240,256,243,786,261,514,590,156,481,374,211 %N A088973 Number of twin prime pairs between consecutive prime-indexed primes of order 4. The bounds are included in the calculation. %C A088973 Conjecture: The interval [PIPS4(n), PIPS4(n+1)] always contains at least one twin prime pair. (This implies the Twin Prime Conjecture.) %F A088973 PIPS4(x) = A049203(x) = the x-th prime-indexed primes of order 4 = prime(prime(prime(prime(prime(x))))) where prime(x) = A000040(x) is the x-th prime. a(n) = number of twin prime pairs in [PIPS4(n), PIPS(n+1)]. %e A088973 a(1) = 5, since there are five pairs of twin primes at least PIPS4(1) = 31 and at most PIPS4(2) = 127: (41,43), (59,61), (71,73), (101,103), and (107,109). %o A088973 (PARI) piptwins4(m,n) = { for(x=m,n, f=1; c=0; p1 = prime(prime(prime(prime(prime(x))))); p2 = prime(prime(prime(prime(prime(x+1))))); forprime(j=p1,p2-2, if(isprime(j+2),f=0; c++) ); print1(c","); ) } %o A088973 (Sage) %o A088973 def PIP(n,i): # Returns the n-th prime-indexed prime of order i %o A088973 if i==0: %o A088973 return primes_first_n(n)[n-1] %o A088973 else: %o A088973 return PIP(PIP(n,i-1),0) %o A088973 def A088973(n): %o A088973 return len([i for i in range(PIP(n,4),PIP(n+1,4),2) if (is_prime(i) and is_prime(i+2))]) %o A088973 A088973(60) # _Danny Rorabaugh_, Mar 30 2015 %Y A088973 Cf. A006450, A049203, A077800, A088971. %K A088973 nonn %O A088973 1,1 %A A088973 _Cino Hilliard_, Oct 30 2003 %E A088973 Edited to count twin pairs entirely within [PIPS4(n), PIPS4(n+1)], rather than pairs with the first prime in that interval. - _Danny Rorabaugh_, Apr 01 2015