cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088980 G.f.: 1 + x + Sum_{n >= 1} ( x^(2^n)/ ((1+x^(2^(n-1)))*Product_{j=0..n-1} (1-x^(2^j)) ) ).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 1, 4, 3, 5, 4, 7, 6, 8, 7, 12, 11, 15, 14, 20, 19, 24, 23, 31, 30, 37, 36, 45, 44, 52, 51, 64, 63, 75, 74, 90, 89, 104, 103, 124, 123, 143, 142, 167, 166, 190, 189, 221, 220, 251, 250, 288, 287, 324, 323, 369, 368, 413, 412, 465, 464, 516, 515, 580
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2003

Keywords

Examples

			1 + x + x^2/((1 + x)*(1 - x)) + x^4/((1 + x^2)*(1 - x)*(1 - x^2)) + x^8/((1 + x^4)*(1 - x)*(1 - x^2)*(1 - x^4)) + ...
		

Crossrefs

Apart from initial terms, same as A088931.

Programs

  • Mathematica
    max = 65; 1+x+Sum[x^(2^n)/((1+x^(2^(n-1))) Product[1-x^(2^j), {j, 0, n-1}] ), {n, 1, Log[2, max] // Ceiling}] + O[x]^max // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2018 *)