cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089039 Number of circular permutations of 2n letters that are free of jealousy.

This page as a plain text file.
%I A089039 #40 Apr 23 2024 18:16:24
%S A089039 1,2,6,60,960,24000,861840,42104160,2686763520,217039253760,
%T A089039 21651071904000,2614084251609600,375698806311628800,
%U A089039 63383303286471168000,12403896267489382656000,2786994829444848422400000,712575504763406361133056000
%N A089039 Number of circular permutations of 2n letters that are free of jealousy.
%C A089039 The number of circular permutations of 2*n people consisting of n married couples, such that no one sits next to a person of the opposite sex who is not his or her spouse.
%C A089039 Limit_{n->oo} a(n)/(n-1)!^2 = Sum_{k>=1} 1/(k!*(k-1)!) = 1.590636854637329063382254424999666247954478159495536647132... (A096789).
%H A089039 Eiji Kurihara, <a href="http://kurihara.sansu.org/">Small room of mathematics</a>; see the answer for <a href="http://kurihara.sansu.org/sansu1-3/380.html">No. 380</a> of arithmetic challenges version 1.
%H A089039 Mikhail Kurkov and others, <a href="https://mathoverflow.net/q/469606">On a A089039 and pair of sequences with simple recursion</a>, Math Overflow, Apr 20 2024
%H A089039 Masaru Yoshikawa, <a href="http://www.sansu.org">Arithmetic challenges</a>. See problem No. 380.
%F A089039 a(1)=1, a(n) = Sum_{k=1..floor(n/2)} n!*(n-k-1)!^2/((k-1)!^2*(n-2*k)!*k) for n > 1.
%F A089039 a(n) = (n-1)!*(A001040(n-1) + A001053(n)) = 2*A276356(n), n > 1. - Conjectured by _Mikhail Kurkov_, Feb 10 2019 and proved by _Max Alekseyev_, Apr 23 2024 (see MO link)
%F A089039 a(n+4) = -(n+3)*(n+2)*(n*(n+1)*a(n) + 2*(n+1)^2*a(n+1) + n*(n+3)*a(n+2) - 2*a(n+3)) for all integer n>1. - conjectured by _Michael Somos_, Apr 21 2024. [The conjecture is equivalent to Kurkov's formula and thus is also proved. - _Max Alekseyev_, Apr 23 2024]
%e A089039 a(3)=6 because ABCcba, ACBbca, ABbacC, ACcabB, AabcCB, AacbBC are possible.
%t A089039 a[1] = 1; a[n_] := n!*(n-2)!*HypergeometricPFQ[{1-n/2, 3/2-n/2}, {2, 2-n, 2-n}, 4]; Table[a[n], {n, 1, 17}] (* _Jean-François Alcover_, Oct 30 2013, after symbolic sum *)
%o A089039 (PARI) a(n) = if (n==1, 1, sum (k=1, n\2, n!*(n-k-1)!^2/((k-1)!^2*(n-2*k)!*k))); \\ _Michel Marcus_, Sep 03 2013
%K A089039 nonn,nice
%O A089039 1,2
%A A089039 Akemi Nakamura, Michihiro Takahashi, Shogaku Meitantei (naka(AT)sansu.org), Dec 03 2003