This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089052 #21 May 01 2023 12:58:50 %S A089052 1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,1,2,1,1,1,0,0,0,1,2,1, %T A089052 1,1,0,1,1,1,2,2,1,1,1,0,0,1,1,1,2,2,1,1,1,0,0,1,2,2,2,2,2,1,1,1,0,0, %U A089052 0,1,2,2,2,2,2,1,1,1,0,0,1,2,2,3,3,2,2,2,1,1,1,0,0,0,1,2,2,3,3,2,2,2,1,1,1 %N A089052 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of n into exactly k powers of 2. %D A089052 J. Jordan and R. Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From _N. J. A. Sloane_, Feb 03 2013 %H A089052 Alois P. Heinz, <a href="/A089052/b089052.txt">Rows n = 0..200, flattened</a> %H A089052 J. Jordan and R. Southwell, <a href="http://dx.doi.org/10.4236/am.2010.15045">Further Properties of Reproducing Graphs</a>, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From _N. J. A. Sloane_, Feb 03 2013 %F A089052 T(2m, k) = T(m, k)+T(2m-1, k-1); T(2m+1, k) = T(2m, k-1). %F A089052 G.f.: 1/Product_{k>=0} (1-y*x^(2^k)). - _Vladeta Jovovic_, Dec 03 2003 %e A089052 1 %e A089052 0 1 %e A089052 0 1 1 %e A089052 0 0 1 1 %e A089052 0 1 1 1 1 %e A089052 0 0 1 1 1 1 %e A089052 0 0 1 2 1 1 1 %e A089052 0 0 0 1 2 1 1 1 %e A089052 0 1 1 1 2 2 1 1 1 %e A089052 0 0 1 1 1 2 2 1 1 1 %e A089052 0 0 1 2 2 2 2 2 1 1 1 %e A089052 0 0 0 1 2 2 2 2 2 1 1 1 %p A089052 A089052 := proc(n, k) %p A089052 option remember; %p A089052 if k > n then %p A089052 return(0); %p A089052 end if; %p A089052 if k= 0 then %p A089052 if n=0 then %p A089052 return(1) %p A089052 else %p A089052 return(0); %p A089052 end if; %p A089052 end if; %p A089052 if n mod 2 = 1 then %p A089052 return procname(n-1, k-1); %p A089052 end if; %p A089052 procname(n-1, k-1)+procname(n/2, k); %p A089052 end proc: %t A089052 t[n_, k_] := t[n, k] = Which[k > n, 0, k == 0, If[n == 0, 1, 0], Mod[n, 2] == 1, t[n-1, k-1], True, t[n-1, k-1] + t[n/2, k]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 14 2014, after Maple *) %Y A089052 Columns give A036987, A075897 (essentially), A089049, A089050, A089051, A319922. %Y A089052 Row sums give A018819. %Y A089052 See A089053 for another version. %K A089052 nonn,tabl %O A089052 0,25 %A A089052 _N. J. A. Sloane_, Dec 03 2003