A089054 Solution to the non-squashing boxes problem (version 1).
1, 2, 4, 8, 14, 23, 36, 54, 78, 109, 149, 199, 262, 339, 434, 548, 686, 849, 1043, 1269, 1535, 1842, 2199, 2607, 3078, 3613, 4225, 4915, 5700, 6581, 7576, 8686, 9934, 11321, 12871, 14585, 16493, 18596, 20925, 23481, 26303, 29392, 32788, 36492, 40553, 44972, 49799
Offset: 0
Keywords
Links
- Amanda Folsom, Youkow Homma, Jun Hwan Ryu, and Benjamin Tong, On a general class of non-squashing partitions, Discrete Mathematics 339 (2016) 1482-1506.
- Oystein J. Rodseth, Sloane's box stacking problem, Discrete Math. 306 (2006), no. 16, 2005-2009.
- Øystein J. Rødseth and James A. Sellers, Congruences modulo high powers of 2 for Sloane's box stacking function, Australasian Journal of Combinatorics, Volume 44 (2009), Pages 255-263.
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003; Discrete Math., 294 (2005), 259-274.
Programs
-
Mathematica
max = 50; B[x_] = 1+x/(1-x) + Sum[x^(3 2^(k-1))/Product[(1-x^(2^j)), {j, 0, k}], {k, 1, Log[2, max]}] + O[x]^max; A[x_] = (B[x]-x)/(1-x)^2; CoefficientList[A[x], x] (* Jean-François Alcover, Sep 01 2018 *)
Formula
G.f.: (B(x)-x)/(1-x)^2, where B(x) = g.f. for A088567.
Comments