cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1.

This page as a plain text file.
%I A089087 #38 Mar 23 2025 13:47:46
%S A089087 1,1,-1,2,-4,1,6,-18,12,-1,24,-96,108,-32,1,120,-600,960,-540,80,-1,
%T A089087 720,-4320,9000,-7680,2430,-192,1,5040,-35280,90720,-105000,53760,
%U A089087 -10206,448,-1,40320,-322560,987840,-1451520,1050000,-344064,40824,-1024,1,362880,-3265920,11612160,-20744640,19595520
%N A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1.
%C A089087 Expected number of uniform random choices of X from interval[0,1] so that their sum exceeds ...
%C A089087 1 is e/0!,
%C A089087 2 is (e^2-e)/1!,
%C A089087 3 is (2e^3-4e^2+e)/2!.
%D A089087 J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366.
%D A089087 J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278.
%H A089087 Daniel Mondot, <a href="/A089087/b089087.txt">Table of n, a(n) for n = 0..5049</a>
%H A089087 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UniformSumDistribution.html">Uniform Sum Distribution</a>.
%F A089087 T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0.
%F A089087 E.g.f.: 1/(exp(y*x)-x).
%e A089087 Triangle begins:
%e A089087        1,
%e A089087        1,       -1,
%e A089087        2,       -4,       1,
%e A089087        6,      -18,      12,         -1,
%e A089087       24,      -96,     108,        -32,        1,
%e A089087      120,     -600,     960,       -540,       80,       -1,
%e A089087      720,    -4320,    9000,      -7680,     2430,     -192,       1,
%e A089087     5040,   -35280,   90720,    -105000,    53760,   -10206,     448,      -1,
%e A089087    40320,  -322560,   987840,  -1451520,  1050000,  -344064,   40824,   -1024,    1,
%e A089087   362880, -3265920, 11612160, -20744640, 19595520, -9450000, 2064384, -157464, 2304, -1,
%e A089087   ...
%t A089087 f[n_] := Sum[(-1)^k*(n-k+1)^k*E^(n-k+1)/k!, {k, 0, n}]; (* f(0)=A001113=e, f(1)=A090142, f(2)=A090143, f(3)=A089139, f(4)=A090611 *)
%t A089087 Table[n!*CoefficientList[f[n], E] // Reverse // Most, {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Nov 05 2013 *)
%o A089087 (Sage)
%o A089087 def A089087_row(n):
%o A089087     R.<x> = ZZ[]
%o A089087     P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
%o A089087     return [(-1)^i*P[n-i+1] for i in (0..n)]
%o A089087 for n in (0..5): print(A089087_row(n))  # _Peter Luschny_, May 03 2013
%Y A089087 Cf. A001113, A090142, A090143, A089139, A090611, A379601, A381673, A382020, A381843, A382026, A090137, A090138.
%K A089087 easy,sign,tabl
%O A089087 0,4
%A A089087 Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 04 2003
%E A089087 Corrected and extended by _Vladeta Jovovic_, Dec 05 2003