This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089087 #38 Mar 23 2025 13:47:46 %S A089087 1,1,-1,2,-4,1,6,-18,12,-1,24,-96,108,-32,1,120,-600,960,-540,80,-1, %T A089087 720,-4320,9000,-7680,2430,-192,1,5040,-35280,90720,-105000,53760, %U A089087 -10206,448,-1,40320,-322560,987840,-1451520,1050000,-344064,40824,-1024,1,362880,-3265920,11612160,-20744640,19595520 %N A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1. %C A089087 Expected number of uniform random choices of X from interval[0,1] so that their sum exceeds ... %C A089087 1 is e/0!, %C A089087 2 is (e^2-e)/1!, %C A089087 3 is (2e^3-4e^2+e)/2!. %D A089087 J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366. %D A089087 J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278. %H A089087 Daniel Mondot, <a href="/A089087/b089087.txt">Table of n, a(n) for n = 0..5049</a> %H A089087 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UniformSumDistribution.html">Uniform Sum Distribution</a>. %F A089087 T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0. %F A089087 E.g.f.: 1/(exp(y*x)-x). %e A089087 Triangle begins: %e A089087 1, %e A089087 1, -1, %e A089087 2, -4, 1, %e A089087 6, -18, 12, -1, %e A089087 24, -96, 108, -32, 1, %e A089087 120, -600, 960, -540, 80, -1, %e A089087 720, -4320, 9000, -7680, 2430, -192, 1, %e A089087 5040, -35280, 90720, -105000, 53760, -10206, 448, -1, %e A089087 40320, -322560, 987840, -1451520, 1050000, -344064, 40824, -1024, 1, %e A089087 362880, -3265920, 11612160, -20744640, 19595520, -9450000, 2064384, -157464, 2304, -1, %e A089087 ... %t A089087 f[n_] := Sum[(-1)^k*(n-k+1)^k*E^(n-k+1)/k!, {k, 0, n}]; (* f(0)=A001113=e, f(1)=A090142, f(2)=A090143, f(3)=A089139, f(4)=A090611 *) %t A089087 Table[n!*CoefficientList[f[n], E] // Reverse // Most, {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Nov 05 2013 *) %o A089087 (Sage) %o A089087 def A089087_row(n): %o A089087 R.<x> = ZZ[] %o A089087 P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n)) %o A089087 return [(-1)^i*P[n-i+1] for i in (0..n)] %o A089087 for n in (0..5): print(A089087_row(n)) # _Peter Luschny_, May 03 2013 %Y A089087 Cf. A001113, A090142, A090143, A089139, A090611, A379601, A381673, A382020, A381843, A382026, A090137, A090138. %K A089087 easy,sign,tabl %O A089087 0,4 %A A089087 Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 04 2003 %E A089087 Corrected and extended by _Vladeta Jovovic_, Dec 05 2003