This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089162 #40 Nov 15 2024 21:04:13 %S A089162 3,7,31,127,23,89,8191,131071,524287,47,178481,233,1103,2089, %T A089162 2147483647,223,616318177,13367,164511353,431,9719,2099863,2351,4513, %U A089162 13264529,6361,69431,20394401,179951,3203431780337,2305843009213693951,193707721,761838257287 %N A089162 Triangle read by rows formed by the prime factors of Mersenne number 2^prime(n) - 1, n >= 1. %C A089162 All factors of Mersenne numbers 2^p - 1, where p is prime, are == 1 (mod p). See the first Caldwell link for a proof of the statement that if q divides M_p = 2^p-1 then q = 2kp + 1 for some integer k. - Comment corrected by _Jonathan Sondow_, Dec 29 2016 %H A089162 Max Alekseyev, <a href="/A089162/b089162.txt">Rows n = 1..197, flattened</a> (rows 1..167 from Jens Kruse Andersen) %H A089162 R. P. Brent, <a href="http://wwwmaths.anu.edu.au/~brent/pub/pub067.html">New factors of Mersenne numbers</a>. %H A089162 Chris K. Caldwell, <a href="https://t5k.org/mersenne/index.html">Mersenne Primes: History, Theorems and Lists</a>. %H A089162 Chris K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php/MersenneDivisor.html">Mersenne divisor</a>. %H A089162 Sam Wagstaff, <a href="http://homes.cerias.purdue.edu/~ssw/cun/">The Cunningham Project</a>. %e A089162 The 16th Mersenne number 2^53-1 has the three prime factors 6361, 69431, 20394401. %e A089162 See tail end of second row in the sequence. Each factor is == 1 (mod 53). %e A089162 Triangle begins: %e A089162 3; %e A089162 7; %e A089162 31; %e A089162 127; %e A089162 23, 89; %e A089162 8191; %e A089162 131071; %e A089162 524287; %e A089162 47, 178481; %e A089162 233, 1103, 2089; %e A089162 2147483647; %e A089162 223, 616318177; %e A089162 13367, 164511353; %e A089162 431, 9719, 2099863; %e A089162 2351, 4513, 13264529; %e A089162 6361, 69431, 20394401; %t A089162 row[n_]:=First/@FactorInteger[2^Prime[n]-1]; Array[row,19]//Flatten (* _Stefano Spezia_, May 03 2024 *) %o A089162 (PARI) mersenne(b,n,d) = { c=0; forprime(x=2,n, c++; y = b^x-1; f=factor(y); v=component(f,1); ln = length(v); if(ln>=d,print1(v[d]",")); ) } %Y A089162 Cf. A001348, A003260, A016047, A088863. %Y A089162 Cf. A122094 (sorted version of this list). %K A089162 nonn,tabf %O A089162 1,1 %A A089162 _Cino Hilliard_, Dec 06 2003 %E A089162 Definition corrected by _Max Alekseyev_, Jul 25 2023