A089170 Numerator of 2*BernoulliB[2*(n+1)]*(4^(n+1)-1)/(2*(n+1))] divided by numerator of the series coefficients of 1/(1 + Cosh[x]).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 527, 1, 1, 1, 1, 31, 1, 1, 731, 1, 41, 1, 1, 1, 37, 1333, 17, 1, 1, 1, 31, 1, 1, 1, 17, 73, 1, 1, 1, 43, 1271, 59, 629, 1, 73, 2759, 43, 1, 1, 1, 17, 1, 67, 7519, 1, 31, 89, 1, 289, 1, 29020032511, 1, 10573, 1, 1, 1, 2227, 486029
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Maple
seq(numer(2*bernoulli(2*n)*(4^n-1)/(2*n))/numer((4^n-1)*bernoulli(2*n)/(2*n)!),n=1..100); # C. Ronaldo
-
Mathematica
Table[Numerator[2*BernoulliB[2*n]*(4^n -1)/(2*n)]/Numerator[SeriesCoefficient[Series[1/(1+Cosh[x]), {x, 0, 2n}], 2n-2]], {n, 1, 128}]
Formula
For n>=0, a(n)=c(n+1) where c(n)=numerator((4^n-1)*B(2*n)/n)/numerator((4^n-1)*B(2*n)/(2*n)!), B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Comments