cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089170 Numerator of 2*BernoulliB[2*(n+1)]*(4^(n+1)-1)/(2*(n+1))] divided by numerator of the series coefficients of 1/(1 + Cosh[x]).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 527, 1, 1, 1, 1, 31, 1, 1, 731, 1, 41, 1, 1, 1, 37, 1333, 17, 1, 1, 1, 31, 1, 1, 1, 17, 73, 1, 1, 1, 43, 1271, 59, 629, 1, 73, 2759, 43, 1, 1, 1, 17, 1, 67, 7519, 1, 31, 89, 1, 289, 1, 29020032511, 1, 10573, 1, 1, 1, 2227, 486029
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Ratios of two similar sequences.
This sequence is related to the sequences of the numerators and denominators of the Taylor series for tan(x), i.e., A002430 and A036279, and the similar sequences A160469 and A156769. - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A002425.
From Johannes W. Meijer, May 24 2009: (Start)
Equals A160469(n+1)/A002430(n+1).
Equals A156769(n+1)/A036279(n+1).
(End)

Programs

  • Maple
    seq(numer(2*bernoulli(2*n)*(4^n-1)/(2*n))/numer((4^n-1)*bernoulli(2*n)/(2*n)!),n=1..100); # C. Ronaldo
  • Mathematica
    Table[Numerator[2*BernoulliB[2*n]*(4^n -1)/(2*n)]/Numerator[SeriesCoefficient[Series[1/(1+Cosh[x]), {x, 0, 2n}], 2n-2]], {n, 1, 128}]

Formula

For n>=0, a(n)=c(n+1) where c(n)=numerator((4^n-1)*B(2*n)/n)/numerator((4^n-1)*B(2*n)/(2*n)!), B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004