This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089187 #55 Oct 05 2023 07:15:59 %S A089187 1,3,7,14,24,40,59,87,121,164,210,274,345,430,523,632,749,890,1039, %T A089187 1222,1412,1620,1838,2088,2357,2651,2953,3278,3612,4020,4439,4902, %U A089187 5387,5898,6418,6974,7557,8182,8835,9512,10218,10984,11759,12635,13525,14448,15399,16415,17473,18570 %N A089187 a(n) is the minimal area of a convex lattice polygon with 2n sides. %C A089187 For polygons with an odd number of sides see A070911. %H A089187 Günter Rote, <a href="/A089187/b089187.txt">Table of n, a(n) for n = 2..100</a> %H A089187 Charles J. Colbourn and R. J. Simpson, <a href="https://doi.org/10.1017/S0004972700030094">A note on bounds on the minimum area of convex lattice polygons</a>, Bull. Austral. Math. Soc., 45[1992], 237-240. %H A089187 Stanley Rabinowitz, <a href="http://stanleyrabinowitz.com/download/convexlatticepolytopes.pdf">Convex Lattice Polygons</a>, Ph.D. Dissertation (Polytechnic University, Brooklyn, New York, 1986). %H A089187 Günter Rote, <a href="/A089187/a089187.txt">a(n), together with coordinates of some smallest 2n-gon, for n=2..100</a>, (2023). %H A089187 Günter Rote, <a href="/A089187/a089187_2.py.txt">Python program for this sequence, and for A070911</a>, (2023). %H A089187 R. J. Simpson, <a href="https://doi.org/10.1017/S0004972700028525">Convex lattice polygons of minimum area</a>, Bull. Austral. Math. Soc., 42[1990], 353-367. %e A089187 The first entry is 1 because the convex lattice quadrilateral of minimal area is a unit square. The minimal area hexagon has area 3. %Y A089187 The even-indexed subsequence of A070911. See also A063984. %K A089187 nonn %O A089187 2,2 %A A089187 _Jamie Simpson_, Dec 07 2003 %E A089187 a(22) onwards from _Günter Rote_, Sep 17 2023