A089198 Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of non-squashing partitions of n into distinct parts of which the greatest is k.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 2, 2, 1, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 2 1 1 1 0 0 0 0 1 2 1 1 1
Links
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
Programs
-
Mathematica
T[n_, m_] := T[n, m] = Which[n==m, 1, m
n, 0, True, Sum[T[n-m, i], {i, 0, m-1}]]; Table[T[n, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
Formula
The nonzero values of T(n, m) lie within a certain cone: T(n, m) = 0 if m < n/2 or if m > n. For m <= n <= 2m, T(n, m) = sum_{i=0}^{m-1} T(n-m, i).
For m <= n <= 2m, T(n, m) = b(n-m) if n < 2m, = b(n-m) - 1 if n = 2m, where b = A088567.