This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089207 #21 Jun 25 2020 16:03:42 %S A089207 6,40,126,288,550,936,1470,2176,3078,4200,5566,7200,9126,11368,13950, %T A089207 16896,20230,23976,28158,32800,37926,43560,49726,56448,63750,71656, %U A089207 80190,89376,99238,109800,121086,133120,145926,159528,173950,189216 %N A089207 a(n) = 4n^3 + 2n^2. %C A089207 Yet another parametric representation of the solutions of the Diophantine equation x^2 - y^2 = z^3 is (3n^3, n^3, 2n^2). By taking the sum x+y+z we get a(n) = 4n^3 + 2n^2. %C A089207 If Y is a 3-subset of an 2n-set X then, for n>=5, a(n-2) is the number of 5-subsets of X having at least two elements in common with Y. - _Milan Janjic_, Dec 16 2007 %H A089207 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A089207 a(n) = 2*A099721(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: 2*x*(3+8*x+x^2)/(x-1)^4. [_R. J. Mathar_, Apr 20 2009] %F A089207 a(n) = 2 * n * A014105(n). - _Richard R. Forberg_, Jun 16 2013 %t A089207 Table[4n^3+2n^2,{n,40}] (* _Harvey P. Dale_, Jun 12 2020 *) %Y A089207 Cf. A085409, A087887. %K A089207 nonn,easy %O A089207 1,1 %A A089207 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 09 2003 %E A089207 More terms from _Ray Chandler_, Feb 15 2004