cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089248 a(n) is the sum of the odd degrees of the irreducible representations of the symmetric group S_n.

This page as a plain text file.
%I A089248 #14 Sep 23 2024 10:31:47
%S A089248 1,2,2,8,12,40,144,128,644,3504,7000,48224,130992,861792,3257600,
%T A089248 32768,425988,5833312,27621672,415526656,1987852432,17674429440,
%U A089248 157807273408,265515959680,2848581615344,30980959604096,114059874705248,1365388896050048,6215927122198944
%N A089248 a(n) is the sum of the odd degrees of the irreducible representations of the symmetric group S_n.
%C A089248 a(n) is divisible by 4 for n >= 4. - _Eric M. Schmidt_, Apr 28 2013
%D A089248 John McKay, Irreducible representations of odd degree, Journal of Algebra 20, 1972 pages 416-418.
%H A089248 Eric M. Schmidt, <a href="/A089248/b089248.txt">Table of n, a(n) for n = 1..200</a>
%H A089248 Eric M. Schmidt, <a href="/A089248/a089248.sage.txt">Sage code to compute this sequence</a>
%F A089248 a(2^n) = 2^(2^n - 1). - _Eric M. Schmidt_, Apr 28 2013
%t A089248 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
%t A089248 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
%t A089248 a[n_] := a[n] = If[n == 1, 1, Select[g[n, n, {}], OddQ] // Total];
%t A089248 Table[Print[n, " ", a[n]];
%t A089248 a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 23 2024, after _Alois P. Heinz_ in A060240 *)
%o A089248 (Sage)
%o A089248 # Simple but inefficient; see links for faster code
%o A089248 def A089248(n) :
%o A089248     res = 0
%o A089248     for P in Partitions(n) :
%o A089248         deg = P.dimension()
%o A089248         if is_odd(deg) : res += deg
%o A089248     return res
%o A089248 # _Eric M. Schmidt_, Apr 28 2013
%Y A089248 Cf. A000085, A059867.
%K A089248 nonn
%O A089248 1,2
%A A089248 Yuval Dekel (dekelyuval(AT)hotmail.com), Dec 11 2003
%E A089248 More terms from _Eric M. Schmidt_, Apr 28 2013