This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089248 #14 Sep 23 2024 10:31:47 %S A089248 1,2,2,8,12,40,144,128,644,3504,7000,48224,130992,861792,3257600, %T A089248 32768,425988,5833312,27621672,415526656,1987852432,17674429440, %U A089248 157807273408,265515959680,2848581615344,30980959604096,114059874705248,1365388896050048,6215927122198944 %N A089248 a(n) is the sum of the odd degrees of the irreducible representations of the symmetric group S_n. %C A089248 a(n) is divisible by 4 for n >= 4. - _Eric M. Schmidt_, Apr 28 2013 %D A089248 John McKay, Irreducible representations of odd degree, Journal of Algebra 20, 1972 pages 416-418. %H A089248 Eric M. Schmidt, <a href="/A089248/b089248.txt">Table of n, a(n) for n = 1..200</a> %H A089248 Eric M. Schmidt, <a href="/A089248/a089248.sage.txt">Sage code to compute this sequence</a> %F A089248 a(2^n) = 2^(2^n - 1). - _Eric M. Schmidt_, Apr 28 2013 %t A089248 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; %t A089248 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; %t A089248 a[n_] := a[n] = If[n == 1, 1, Select[g[n, n, {}], OddQ] // Total]; %t A089248 Table[Print[n, " ", a[n]]; %t A089248 a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 23 2024, after _Alois P. Heinz_ in A060240 *) %o A089248 (Sage) %o A089248 # Simple but inefficient; see links for faster code %o A089248 def A089248(n) : %o A089248 res = 0 %o A089248 for P in Partitions(n) : %o A089248 deg = P.dimension() %o A089248 if is_odd(deg) : res += deg %o A089248 return res %o A089248 # _Eric M. Schmidt_, Apr 28 2013 %Y A089248 Cf. A000085, A059867. %K A089248 nonn %O A089248 1,2 %A A089248 Yuval Dekel (dekelyuval(AT)hotmail.com), Dec 11 2003 %E A089248 More terms from _Eric M. Schmidt_, Apr 28 2013