A089265 a(1) = 0; thereafter a(2*n) = a(n) + 1, a(2*n+1) = 2*n.
0, 1, 2, 2, 4, 3, 6, 3, 8, 5, 10, 4, 12, 7, 14, 4, 16, 9, 18, 6, 20, 11, 22, 5, 24, 13, 26, 8, 28, 15, 30, 5, 32, 17, 34, 10, 36, 19, 38, 7, 40, 21, 42, 12, 44, 23, 46, 6, 48, 25, 50, 14, 52, 27, 54, 9, 56, 29, 58, 16, 60, 31, 62, 6, 64, 33, 66, 18, 68, 35, 70, 11, 72
Offset: 1
Links
Programs
-
Maple
nmax:=73: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := p + 2*(n-1) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 23 2013
-
Mathematica
a[n_] := With[{v = IntegerExponent[n, 2]}, v + n/2^v - 1]; Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *)
-
PARI
a(n) = valuation(n,2) + n/2^valuation(n,2) - 1
Formula
a(1) = 0; thereafter a(2*n) = a(n) + 1, a(2*n+1) = 2*n.
G.f.: sum(k>=0, (t^2+2t^3-t^4)/(1-t^2)^2, t=(x^2)^k).
a((2*n-1)*2^p) = p + 2*(n-1), p >= 0. - Johannes W. Meijer, Jan 23 2013
Comments