cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089275 Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.

This page as a plain text file.
%I A089275 #19 Apr 12 2013 13:11:11
%S A089275 1,1,18,1,118,600,1,412,11772,35280,1,1060,97308,1494576,3265920,1,
%T A089275 2270,508708,23753736,249815520,439084800,1,4298,1989148,218417400,
%U A089275 6710001408,54187574400,80951270400,1,7448,6355048,1402502400
%N A089275 Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.
%C A089275 The polynomials are pe(n,x) := sum(a(n,m)*x^m,m=0..n-1). Companion polynomials are po(n,x) := sum(b(n,m)*x^m,m=0..n-1) with b(n,m) := A089276(n,m).
%H A089275 Wolfdieter Lang, <a href="/A089275/a089275.pdf">First 7 rows, also for A089276</a>
%F A089275 Combined recursion for polynomials pe(n, x) and po(n, x) defined above: pe(n, x)= 4*(2*n-1)*n*(n-1)*x*po(n-1, x) + (1-(2*n-1)*(2*n-2)*x)*pe(n-1, x) and po(n, x) = 2*(pe(n, x) + ((n-1)/2)*(1-2*n*(2*n-1)*x)*po(n-1, x))/(n+1), n >= 2,  with po(1, x) = 1 = pe(1,x). (Corrected _Wolfdieter Lang_, Apr 11 2013)
%F A089275 Rewritten recursion for polynomial po: po(n, x) = (2*(1 - 2*(2*n-1)*(n-1)*x)*pe(n-1, x) + (n-1)*(1 + 6*n*(2*n-1)*x)* po(n-1, x))/(n+1), with pe(n,x) from above. - _Wolfdieter Lang_, Apr 11 2013
%F A089275 Combined recursion with b(n, m) := A089276(n, m): a(n, m) = a(n-1, m) - 2*(2*n-1)*(n-1)*a(n-1, m-1) + 4*n*(2*n-1)*(n-1)*b(n-1, m-1) and b(n, m) = (-2*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n, m))/(n+1), with n >= m+1 >= 2 and a(1, 0)= 1 = b(1, 0), else 0.
%F A089275 Rewritten recursion for triangle b: b(n, m) = (6*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n-1, m) - 4*(2*n-1)*(n-1)*a(n-1, m-1))/(n+1), with a(n, m) from above. - _Wolfdieter Lang_, Apr 11 2013
%Y A089275 Cf. A078739, A089276.
%K A089275 nonn,easy,tabl
%O A089275 1,3
%A A089275 _Wolfdieter Lang_, Nov 07 2003