cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089324 Number of lattice paths from (0,0) to the line x+y=n that use the step set {(0,1),(1,0),(2,0),(3,0),...} and never pass below y=x.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 29, 53, 130, 247, 611, 1192, 2965, 5897, 14726, 29723, 74443, 152020, 381617, 786733, 1978582, 4111295, 10355303, 21661168, 54628201, 114925697, 290148890, 613442227, 1550177791, 3291704108, 8324934533, 17745496453
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2003

Keywords

Comments

a(n) = Sum(A011117(i,n-i), i=0..floor(n/2)), i.e. diagonal sums in A011117 formatted as an upper right triangle.
Hankel transform is A060656. - Paul Barry, Mar 01 2010

Examples

			a(4) = 7 because we have VVVV, VVVh, VVhV, VhVV, VVH, VVhh and VhVh, where V=(0,1), h=(1,0) and H=(2,0).
		

Crossrefs

Cf. A011117.

Programs

  • Mathematica
    CoefficientList[Series[2/((1-x)^2+Sqrt[1-6*x^2+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)

Formula

G.f.: 2/[(1-z)^2+sqrt(1-6z^2+z^4)].
G.f.: 1/(1-x-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction). - Paul Barry, Mar 01 2010
Conjecture: (n+1)*a(n) +3*(-n-1)*a(n-1) +(-5*n+13)*a(n-2) +18*(n-2)*a(n-3) +(-5*n+7)*a(n-4) +3*(-n+5)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(6*sqrt(2)-8) * (1 - (12*sqrt(2)-17)*(-1)^n) * (sqrt(2)+1)^(n+4) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 09 2014