This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089353 #34 Jun 04 2025 10:23:57 %S A089353 1,2,1,3,2,1,4,6,2,1,5,10,6,2,1,6,19,14,6,2,1,7,28,28,14,6,2,1,8,44, %T A089353 52,33,14,6,2,1,9,60,93,64,33,14,6,2,1,10,85,152,127,70,33,14,6,2,1, %U A089353 11,110,242,228,142,70,33,14,6,2,1,12,146,370,404,272,149,70,33,14,6,2,1,13 %N A089353 Triangle read by rows: T(n,m) = number of planar partitions of n with trace m. %C A089353 Also number of partitions of n objects of 2 colors into k parts, each part containing at least one black object. %D A089353 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (Ch. 11, Example 5 and Ch. 12, Example 5). %D A089353 R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol. 2, 1999; p. 365 and Exercise 7.99, p. 484 and pp. 548-549. %H A089353 Alois P. Heinz, <a href="/A089353/b089353.txt">Rows n = 1..200, flattened</a> %F A089353 G.f.: Product_{k>=1} 1/(1-q*x^k)^k (with offset n=0 in x powers). %F A089353 T(n+m, m) = A005380(n), n >= 1, for all m >= n. T(m, m) = 1 for m >= 1. See the Stanley reference Exercise 7.99. With offset n=0 a column for m=0 with the only non-vanishing entry T(0, 0) = 1 could be added. - _Wolfdieter Lang_, Mar 09 2015 %e A089353 The triangle T(n,m) begins: %e A089353 n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... %e A089353 1: 1 %e A089353 2: 2 1 %e A089353 3: 3 2 1 %e A089353 4: 4 6 2 1 %e A089353 5: 5 10 6 2 1 %e A089353 6: 6 19 14 6 2 1 %e A089353 7: 7 28 28 14 6 2 1 %e A089353 8: 8 44 52 33 14 6 2 1 %e A089353 9: 9 60 93 64 33 14 6 2 1 %e A089353 10: 10 85 152 127 70 33 14 6 2 1 %e A089353 11: 11 110 242 228 142 70 33 14 6 2 1 %e A089353 12: 12 146 370 404 272 149 70 33 14 6 2 1 %e A089353 ... reformatted, _Wolfdieter Lang_, Mar 09 2015 %p A089353 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A089353 `if`(i<1, 0, add(b(n-i*j, i-1)*x^j* %p A089353 binomial(i+j-1, j), j=0..n/i)))) %p A089353 end: %p A089353 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)): %p A089353 seq(T(n), n=1..12); # _Alois P. Heinz_, Apr 13 2017 %t A089353 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[i + j - 1, j], {j, 0, n/i}]]]]; %t A089353 T[n_] := Table[Coefficient[#, x, i], {i, 1, Exponent[#, x]}]& @ b[n, n]; %t A089353 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 19 2018, after _Alois P. Heinz_ *) %Y A089353 Cf. A000219 (row sums), A005380, A005993 (trace 2), A050531 (trace 3), A089351 (trace 4). %K A089353 nonn,tabl %O A089353 1,2 %A A089353 _Wouter Meeussen_ and _Vladeta Jovovic_, Dec 26 2003 %E A089353 Edited by _Christian G. Bower_, Jan 08 2004