This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089359 #25 Oct 15 2022 14:09:10 %S A089359 2,3,7,31,127,151,727,751,5167,5791,5881,40351,40471,41047,41161, %T A089359 45361,45481,362911,363751,368047,368647,368791,403327,403951,408241, %U A089359 408271,408361,409081,3628927,3629671,3633991,3634591,3669241,3669847,3669961 %N A089359 Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct. %H A089359 Alois P. Heinz, <a href="/A089359/b089359.txt">Table of n, a(n) for n = 1..16812</a> (first 1000 terms from Seiichi Manyama) %e A089359 From _Seiichi Manyama_, Mar 24 2018: (Start) %e A089359 n | a(n) | %e A089359 --+------+------------------ %e A089359 1 | 2 | 2! %e A089359 2 | 3 | 2! + 1! %e A089359 3 | 7 | 3! + 1! %e A089359 4 | 31 | 4! + 3! + 1! %e A089359 5 | 127 | 5! + 3! + 1! %e A089359 6 | 151 | 5! + 4! + 3! + 1! (End) %o A089359 (Python) %o A089359 from sympy import isprime %o A089359 def facbase(k, f): %o A089359 return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1") %o A089359 def auptoN(N): # terms up to N factorial-base digits; 20 generates b-file %o A089359 f = [factorial(i) for i in range(1, N+1)] %o A089359 return list(filter(isprime, (facbase(k, f) for k in range(2**N)))) %o A089359 print(auptoN(10)) # _Michael S. Branicky_, Oct 15 2022 %Y A089359 Cf. A059590, A088332, A300947, A301593. %K A089359 nonn %O A089359 1,1 %A A089359 _Amarnath Murthy_, Nov 07 2003 %E A089359 More terms from _Vladeta Jovovic_, Nov 08 2003