cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089359 Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct.

This page as a plain text file.
%I A089359 #25 Oct 15 2022 14:09:10
%S A089359 2,3,7,31,127,151,727,751,5167,5791,5881,40351,40471,41047,41161,
%T A089359 45361,45481,362911,363751,368047,368647,368791,403327,403951,408241,
%U A089359 408271,408361,409081,3628927,3629671,3633991,3634591,3669241,3669847,3669961
%N A089359 Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct.
%H A089359 Alois P. Heinz, <a href="/A089359/b089359.txt">Table of n, a(n) for n = 1..16812</a> (first 1000 terms from Seiichi Manyama)
%e A089359 From _Seiichi Manyama_, Mar 24 2018: (Start)
%e A089359 n | a(n) |
%e A089359 --+------+------------------
%e A089359 1 |    2 | 2!
%e A089359 2 |    3 | 2! + 1!
%e A089359 3 |    7 | 3! + 1!
%e A089359 4 |   31 | 4! + 3! + 1!
%e A089359 5 |  127 | 5! + 3! + 1!
%e A089359 6 |  151 | 5! + 4! + 3! + 1! (End)
%o A089359 (Python)
%o A089359 from sympy import isprime
%o A089359 def facbase(k, f):
%o A089359     return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
%o A089359 def auptoN(N): # terms up to N factorial-base digits; 20 generates b-file
%o A089359     f = [factorial(i) for i in range(1, N+1)]
%o A089359     return list(filter(isprime, (facbase(k, f) for k in range(2**N))))
%o A089359 print(auptoN(10)) # _Michael S. Branicky_, Oct 15 2022
%Y A089359 Cf. A059590, A088332, A300947, A301593.
%K A089359 nonn
%O A089359 1,1
%A A089359 _Amarnath Murthy_, Nov 07 2003
%E A089359 More terms from _Vladeta Jovovic_, Nov 08 2003