cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089363 Numbers of pairs (i, j), i, j > 1, such that i^j <= 10^n.

Original entry on oeis.org

3, 16, 50, 145, 407, 1177, 3508, 10677, 32967, 102719, 321798, 1011538, 3186390, 10050746, 31730137, 100228044, 316713624, 1001037551, 3164497350, 10004755379, 31632975601, 100021893197, 316274794667, 1000101078155, 3162495003354, 10000467510250, 31623782520067
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2003

Keywords

Comments

These numbers are related to the divergent series Sum_{k=2..r} n^(1/k) = n^(1/2) + n^(1/3) + ... + n^(1/r) for abs(n) > 0 and r=floor(log_2(n)).

Examples

			There are 16 perfect powers <= 100: 2^2, 2^3, 3^2, 2^4, 4^2, 5^2, 3^3, 2^5, 6^2, 7^2, 2^6, 4^3, 8^2, 3^4, 9^2, 10^2. So a(2) = 16.
		

Crossrefs

Cf. A089361.

Programs

  • Mathematica
    A089363[n_] := Sum[Floor[10^(n/j)] - 1, {j, 2, BitLength[10^n] - 1}];
    Array[A089363, 30] (* Paolo Xausa, Jan 14 2025 *)
  • PARI
    plessn10(n,m=2) = { for(k=1,n, s=0; z = 10^k; r = sqrtint(z); for(x=m,r, for(y=2,r, p = floor(x^y); if(p<=z,s++) ) ); print1(s", ") ) }

Formula

a(n) = A089361(10^n) = Sum_{p >= 2} (floor(10^(n/p)) - 1). - David Wasserman, Sep 14 2005

Extensions

More terms from David Wasserman, Sep 14 2005