cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089365 Smallest prime whose product of digits is 2^n.

This page as a plain text file.
%I A089365 #15 Aug 15 2017 20:01:33
%S A089365 11,2,41,181,281,1481,881,4481,18481,48281,48481,228881,284881,828881,
%T A089365 884881,4448881,4848881,18848881,24888881,48888841,88884881,188888881,
%U A089365 888828881,848888881,4848488881,4488888881,18848888881,28888884881
%N A089365 Smallest prime whose product of digits is 2^n.
%H A089365 Chai Wah Wu, <a href="/A089365/b089365.txt">Table of n, a(n) for n = 0..1000</a>
%e A089365 a(8) = 24481 and the digital product is 2^8.
%t A089365 NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; a = Table[0, {24}]; p = 2; Do[q = Log[2, Times @@ IntegerDigits[p]]; If[q != 0 && IntegerQ[q] && a[[q]] == 0, a[[q]] = p; Print[q, " = ", p]]; p = NextPrim[p], {n, 1, 10^9}]  (* _Robert G. Wilson v_, Nov 08 2003 *)
%t A089365 For a(8): a = Map[ FromDigits, Join[{0}, #, {1}] & /@ Permutations[{2, 8, 8 }]]; Min[ Select[a, PrimeQ[ # ] & ]] (* _Robert G. Wilson v_, Nov 08 2003 *)
%Y A089365 Cf. A088653, A090840, A091465, A090841, A089298.
%K A089365 base,nonn
%O A089365 0,1
%A A089365 _Amarnath Murthy_, Nov 07 2003
%E A089365 Edited, corrected and extended by _Robert G. Wilson v_, Nov 08 2003
%E A089365 a(24)-a(25) corrected by _Chai Wah Wu_, Aug 15 2017