This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089383 #13 Jul 29 2017 01:09:20 %S A089383 1,8,49,280,1569,8752,48833,272976,1529441,8589176,48342449,272640680, %T A089383 1540495553,8718956768,49423735553,280551815456,1594568513857, %U A089383 9073566717800,51686272315569,294711466792120,1681938025818081,9606920311565328,54915241962566849,314131983462253680 %N A089383 Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0). %C A089383 Partial sums of A026002. %H A089383 Vincenzo Librandi, <a href="/A089383/b089383.txt">Table of n, a(n) for n = 0..200</a> %F A089383 G.f.: (1-z-q)^2/(4*z^2*(1-z)*q), where q = sqrt(1-6*z+z^2). %F A089383 Recurrence: (n+2)*n^2*a(n) = (n+1)*(7*n^2+4*n+1)*a(n-1) - (7*n^2+10*n+4)*n * a(n-2) + (n-1)*(n+1)^2*a(n-3). - _Vaclav Kotesovec_, Oct 24 2012 %F A089383 a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 24 2012 %e A089383 a(0) = 1 because the paths HH, HUD, UDH, UHD, UDUD and U(UD)D from (0,0) to (4,0) have only one peak at an even level (shown between parentheses). %t A089383 CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])^2/(4*x^2*(1-x)* Sqrt[1-6*x+x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 24 2012 *) %o A089383 (PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((1-x-q)^2/(4*x^2*(1-x)*q)) \\ _Joerg Arndt_, May 10 2013 %Y A089383 Cf. A006318. %K A089383 nonn %O A089383 0,2 %A A089383 _Emeric Deutsch_, Dec 28 2003