cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089383 Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0).

This page as a plain text file.
%I A089383 #13 Jul 29 2017 01:09:20
%S A089383 1,8,49,280,1569,8752,48833,272976,1529441,8589176,48342449,272640680,
%T A089383 1540495553,8718956768,49423735553,280551815456,1594568513857,
%U A089383 9073566717800,51686272315569,294711466792120,1681938025818081,9606920311565328,54915241962566849,314131983462253680
%N A089383 Number of peaks at even level in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the axis) from (0,0) to (2n+4,0).
%C A089383 Partial sums of A026002.
%H A089383 Vincenzo Librandi, <a href="/A089383/b089383.txt">Table of n, a(n) for n = 0..200</a>
%F A089383 G.f.: (1-z-q)^2/(4*z^2*(1-z)*q), where q = sqrt(1-6*z+z^2).
%F A089383 Recurrence: (n+2)*n^2*a(n) = (n+1)*(7*n^2+4*n+1)*a(n-1) - (7*n^2+10*n+4)*n * a(n-2) + (n-1)*(n+1)^2*a(n-3). - _Vaclav Kotesovec_, Oct 24 2012
%F A089383 a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 24 2012
%e A089383 a(0) = 1 because the paths HH, HUD, UDH, UHD, UDUD and U(UD)D from (0,0) to (4,0) have only one peak at an even level (shown between parentheses).
%t A089383 CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])^2/(4*x^2*(1-x)* Sqrt[1-6*x+x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 24 2012 *)
%o A089383 (PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((1-x-q)^2/(4*x^2*(1-x)*q)) \\ _Joerg Arndt_, May 10 2013
%Y A089383 Cf. A006318.
%K A089383 nonn
%O A089383 0,2
%A A089383 _Emeric Deutsch_, Dec 28 2003