cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089447 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.

This page as a plain text file.
%I A089447 #15 Jun 07 2016 10:27:57
%S A089447 1,1,1,1,4,1,1,10,10,1,1,20,48,20,1,1,35,162,162,35,1,1,56,441,841,
%T A089447 441,56,1,1,84,1036,3314,3314,1036,84,1,1,120,2184,10786,18004,10786,
%U A089447 2184,120,1,1,165,4236,30460,77952,77952,30460,4236,165,1,1,220,7689,77044
%N A089447 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.
%C A089447 Explicitly, g(x,y) = ((1-x-y)+sqrt((1-x-y)^2-4xy))/(2xy) = sum(n>=0, sum(k>=0, N(n,k)*x^n*y^k), where N(n,k) are the Narayana numbers: N(n,k) = C(n+k,k)*C(n+k+2,k+1)/(n+k+2). This array is directly related to sequence A002293, which has a g.f. h(x) that satisfies h(x) = 1 + x*h(x)^4. The inverse binomial transform of the rows grows by three terms per row.
%e A089447 Rows begin:
%e A089447 [1,   1,     1,      1,       1,        1,         1,          1, ...];
%e A089447 [1,   4,    10,     20,      35,       56,        84,        120, ...];
%e A089447 [1,  10,    48,    162,     441,     1036,      2184,       4236, ...];
%e A089447 [1,  20,   162,    841,    3314,    10786,     30460,      77044, ...];
%e A089447 [1,  35,   441,   3314,   18004,    77952,    284880,     912042, ...];
%e A089447 [1,  56,  1036,  10786,   77952,   435654,   2007456,    7951674, ...];
%e A089447 [1,  84,  2184,  30460,  284880,  2007456,  11427992,   55009548, ...];
%e A089447 [1, 120,  4236,  77044,  912042,  7951674,  55009548,  317112363, ...];
%e A089447 [1, 165,  7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
%o A089447 (PARI) {L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}
%Y A089447 Cf. A089448 (diagonal), A089449 (antidiagonal sums), A086617, A088925, A002293.
%K A089447 nonn,tabl
%O A089447 0,5
%A A089447 _Paul D. Hanna_, Nov 02 2003