cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089460 Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.

This page as a plain text file.
%I A089460 #11 Apr 05 2025 19:53:41
%S A089460 1,2,1,8,4,1,50,24,6,1,432,200,48,8,1,4802,2160,500,80,10,1,65536,
%T A089460 28812,6480,1000,120,12,1,1062882,458752,100842,15120,1750,168,14,1,
%U A089460 20000000,8503056,1835008,268912,30240,2800,224,16,1,428717762,180000000,38263752,5505024,605052,54432,4200,288,18,1
%N A089460 Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.
%C A089460 Equals the matrix square of A088956 when treated as a lower triangular matrix. The 2nd hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = 2*(n-k+2)^(n-k-1)*C(n,k). Given a table in which the n-th row is the n-th binomial transform of the first row, then the 2nd hyperbinomial transform of any diagonal results in the diagonal located 2 diagonals lower in the table.
%H A089460 G. C. Greubel, <a href="/A089460/b089460.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A089460 T(n, k) = 2*(n-k+2)^(n-k-1)*C(n, k).
%F A089460 E.g.f.: exp(x*y)*(-LambertW(-y)/y)^2.
%F A089460 Note: (-LambertW(-y)/y)^2 = Sum_{n>=0} 2*(n+2)^(n-1)*y^n/n!.
%e A089460 Rows begin:
%e A089460   {1},
%e A089460   {2,1},
%e A089460   {8,4,1},
%e A089460   {50,24,6,1},
%e A089460   {432,200,48,8,1},
%e A089460   {4802,2160,500,80,10,1},
%e A089460   {65536,28812,6480,1000,120,12,1},
%e A089460   {1062882,458752,100842,15120,1750,168,14,1},..
%t A089460 Join[{1}, Table[Binomial[n, k]*2*(n - k + 2)^(n - k - 1), {n, 1, 49}, {k, 0, n}]] // Flatten (* _G. C. Greubel_, Nov 18 2017 *)
%o A089460 (PARI) for(n=0,10, for(k=0,n, print1(2*(n-k+2)^(n-k-1)*binomial(n,k), ", "))) \\ _G. C. Greubel_, Nov 18 2017
%Y A089460 Cf. A089461(row sums), A089462(diagonal), A089463, A088956.
%K A089460 nonn,tabl
%O A089460 0,2
%A A089460 _Paul D. Hanna_, Nov 05 2003