cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089463 Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform.

This page as a plain text file.
%I A089463 #13 Apr 05 2025 19:53:31
%S A089463 1,3,1,15,6,1,108,45,9,1,1029,432,90,12,1,12288,5145,1080,150,15,1,
%T A089463 177147,73728,15435,2160,225,18,1,3000000,1240029,258048,36015,3780,
%U A089463 315,21,1,58461513,24000000,4960116,688128,72030,6048,420,24,1,1289945088
%N A089463 Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform.
%C A089463 Equals the matrix cube of A088956 when treated as a lower triangular matrix. The 3rd hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = 3*(n-k+3)^(n-k-1)*C(n,k). Given a table in which the n-th row is the n-th binomial transform of the first row, then the 3rd hyperbinomial transform of any diagonal results in the 3rd diagonal lower in the table.
%H A089463 G. C. Greubel, <a href="/A089463/b089463.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A089463 T(n, k) = 3*(n-k+3)^(n-k-1)*C(n, k).
%F A089463 E.g.f.: exp(x*y)*(-LambertW(-y)/y)^3.
%F A089463 Note: (-LambertW(-y)/y)^3 = Sum_{n>=0} 3*(n+3)^(n-1)*y^n/n!.
%e A089463 Rows begin:
%e A089463   {1},
%e A089463   {3,1},
%e A089463   {15,6,1},
%e A089463   {108,45,9,1},
%e A089463   {1029,432,90,12,1},
%e A089463   {12288,5145,1080,150,15,1},
%e A089463   {177147,73728,15435,2160,225,18,1},
%e A089463   {3000000,1240029,258048,36015,3780,315,21,1},..
%t A089463 Flatten[Table[3(n-k+3)^(n-k-1) Binomial[n,k],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jun 26 2013 *)
%o A089463 (PARI) for(n=0,10, for(k=0,n, print1(3*(n-k+3)^(n-k-1)*binomial(n,k), ", "))) \\ _G. C. Greubel_, Nov 17 2017
%Y A089463 Cf. A089464(row sums), A089465(diagonal), A089460, A088956.
%K A089463 nonn,tabl
%O A089463 0,2
%A A089463 _Paul D. Hanna_, Nov 05 2003