This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089463 #13 Apr 05 2025 19:53:31 %S A089463 1,3,1,15,6,1,108,45,9,1,1029,432,90,12,1,12288,5145,1080,150,15,1, %T A089463 177147,73728,15435,2160,225,18,1,3000000,1240029,258048,36015,3780, %U A089463 315,21,1,58461513,24000000,4960116,688128,72030,6048,420,24,1,1289945088 %N A089463 Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform. %C A089463 Equals the matrix cube of A088956 when treated as a lower triangular matrix. The 3rd hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = 3*(n-k+3)^(n-k-1)*C(n,k). Given a table in which the n-th row is the n-th binomial transform of the first row, then the 3rd hyperbinomial transform of any diagonal results in the 3rd diagonal lower in the table. %H A089463 G. C. Greubel, <a href="/A089463/b089463.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A089463 T(n, k) = 3*(n-k+3)^(n-k-1)*C(n, k). %F A089463 E.g.f.: exp(x*y)*(-LambertW(-y)/y)^3. %F A089463 Note: (-LambertW(-y)/y)^3 = Sum_{n>=0} 3*(n+3)^(n-1)*y^n/n!. %e A089463 Rows begin: %e A089463 {1}, %e A089463 {3,1}, %e A089463 {15,6,1}, %e A089463 {108,45,9,1}, %e A089463 {1029,432,90,12,1}, %e A089463 {12288,5145,1080,150,15,1}, %e A089463 {177147,73728,15435,2160,225,18,1}, %e A089463 {3000000,1240029,258048,36015,3780,315,21,1},.. %t A089463 Flatten[Table[3(n-k+3)^(n-k-1) Binomial[n,k],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jun 26 2013 *) %o A089463 (PARI) for(n=0,10, for(k=0,n, print1(3*(n-k+3)^(n-k-1)*binomial(n,k), ", "))) \\ _G. C. Greubel_, Nov 17 2017 %Y A089463 Cf. A089464(row sums), A089465(diagonal), A089460, A088956. %K A089463 nonn,tabl %O A089463 0,2 %A A089463 _Paul D. Hanna_, Nov 05 2003