cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089467 Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.

This page as a plain text file.
%I A089467 #12 Jan 12 2025 23:56:13
%S A089467 1,2,8,52,478,5706,83824,1461944,29510268,676549450,17361810016,
%T A089467 492999348348,15345359136232,519525230896322,19005788951346240,
%U A089467 747102849650454256,31404054519248544016,1405608808807797838866,66741852193123060505728,3350816586986433907218500,177352811048578736727396576
%N A089467 Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.
%C A089467 See A088956 for the definition of the hyperbinomial transform.
%F A089467 a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*A089466(k).
%F A089467 a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1)*C(n, k)*A089468(k).
%F A089467 a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!.
%F A089467 a(n) ~ exp(1/2) * n^n. - _Vaclav Kotesovec_, Oct 11 2020
%t A089467 Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j,0,m}], {m,0,n}], {n,1,20}]}] (* _Vaclav Kotesovec_, Oct 11 2020 *)
%o A089467 (PARI) a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))
%Y A089467 Cf. A089466, A089468, A088956.
%K A089467 nonn
%O A089467 0,2
%A A089467 _Paul D. Hanna_, Nov 08 2003
%E A089467 More terms from _Michel Marcus_, Jan 12 2025