cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089468 Hyperbinomial transform of A089467 and also the 2nd hyperbinomial transform of A089466.

This page as a plain text file.
%I A089468 #14 Jan 12 2025 20:28:57
%S A089468 1,3,15,110,1083,13482,203569,3618540,74058105,1715620148,44384718879,
%T A089468 1268498827752,39692276983555,1349678904881400,49556966130059553,
%U A089468 1954156038072106448,82363978221026323761,3695194039210436996400
%N A089468 Hyperbinomial transform of A089467 and also the 2nd hyperbinomial transform of A089466.
%C A089468 See A088956 for the definition of the hyperbinomial transform.
%F A089468 a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*A089467(k).
%F A089468 a(n) = Sum_{k=0..n} 2*(n-k+2)^(n-k-1)*C(n, k)*A089466(k).
%F A089468 a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*(n+1)^(n-m-j)*(m+j)!/(-2)^j)/m!.
%F A089468 E.g.f.: (LambertW(-x)^2*exp(-1/2*LambertW(-x)^2))/(x^2*(1+LambertW(-x))). - _Vladeta Jovovic_, Oct 26 2004
%F A089468 a(n) ~ exp(3/2)*n^n. - _Vaclav Kotesovec_, Jul 09 2013
%t A089468 CoefficientList[Series[(LambertW[-x]^2*E^(-1/2*LambertW[-x]^2))/(x^2*(1+LambertW[-x])), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jul 09 2013 *)
%o A089468 (PARI) a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*(n+1)^(n-m-j)*(m+j)!/(-2)^j)/m!))
%Y A089468 Cf. A089466, A089467, A088956.
%K A089468 nonn
%O A089468 0,2
%A A089468 _Paul D. Hanna_, Nov 08 2003