cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089503 Triangle of numbers used for basis change between certain falling factorials.

This page as a plain text file.
%I A089503 #31 Nov 17 2021 22:54:43
%S A089503 1,1,4,1,12,30,1,24,168,336,1,40,540,2880,5040,1,60,1320,13200,59400,
%T A089503 95040,1,84,2730,43680,360360,1441440,2162160,1,112,5040,117600,
%U A089503 1528800,11007360,40360320,57657600,1,144,8568,274176,5140800,57576960
%N A089503 Triangle of numbers used for basis change between certain falling factorials.
%C A089503 Used to relate array A078739 ((2,2)-Stirling2) to triangle A071951 (Legendre-Stirling).
%H A089503 Wolfdieter Lang, <a href="/A089503/a089503.txt">First 9 rows</a>.
%F A089503 fallfac(x+n-1, 2*n) = Sum_{m=1..n} a(n, m)*fallfac(x, 2*n-(m-1)), n>=1 where fallfac(x, k) := Product_{j=1..k} (x+1-j), with fallfac(n, k) = A068424(n, k) (falling factorials). a(n, m) = 0 if n < m.
%F A089503 T(n, m) = binomial(n-1, m-1)*binomial(2n, m-1)*m!, for 1 <= m <= n, with binomial(n, m) = A007318. - _Stefano Negro_, Nov 10 2021
%e A089503 The triangle begins:
%e A089503 n\m 1   2    3      4       5        6        7        8 ...
%e A089503 1:  1
%e A089503 2:  1   4
%e A089503 3:  1  12   30
%e A089503 4:  1  24  168    336
%e A089503 5:  1  40  540   2880    5040
%e A089503 6:  1  60 1320  13200   59400    95040
%e A089503 7:  1  84 2730  43680  360360  1441440  2162160
%e A089503 8:  1 112 5040 117600 1528800 11007360 40360320 57657600
%e A089503 ...
%e A089503 Row 9:  1 144 8568 274176 5140800 57576960 374250240 1283143680 1764322560
%e A089503 Row 10: 1 180 13680 574560 14651280 234420480 2344204800 14065228800 45711993600 60949324800.
%e A089503 Reformatted - _Wolfdieter Lang_, Apr 10 2013
%e A089503 n=3: fallfac(x+2,6) = 1*fallfac(x,6) + 12*fallfac(x,5) + 30*fallfac(x,4).
%t A089503 eq[n_, x_] := Sum[FactorialPower[x, 1 - m + 2*n]*a[n, m], {m, 1, n}] == FactorialPower[x + n - 1, 2*n]; eq[n_] := Table[eq[n, x], {x, n + 1, 2*n}]; row[n_] := First[Table[a[n, m], {m, 1, n}] /. Solve[eq[n]]]; Array[row, 10] // Flatten (* _Jean-François Alcover_, Sep 02 2016 *)
%t A089503 a[n_,m_]:= Binomial[n-1,m-1]*Binomial[2n,m-1]*Gamma[m]; Table[a[n,m],{n,1,10},{m,1,n}] (* _Stefano Negro_, Nov 10 2021 *)
%K A089503 nonn,easy,tabl
%O A089503 1,3
%A A089503 _Wolfdieter Lang_, Dec 01 2003