cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089505 Triangle of signed numbers used for the computation of the column sequences of triangle A089504.

This page as a plain text file.
%I A089505 #13 Aug 28 2019 17:03:45
%S A089505 1,-1,4,1,-24,50,-1,114,-950,1350,31,-15504,400520,-1897200,2052855,
%T A089505 -9269,19612560,-1431859000,17333030000,-56265334125,49236404224,
%U A089505 342953,-3011508588,594221485000,-16634292228125,123422029355625,-302409994743808,222337901418633,-9945637
%N A089505 Triangle of signed numbers used for the computation of the column sequences of triangle A089504.
%C A089505 A089504(n+m,m)= sum(a(m,p)*((p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A089506(m); m=1,2,..., n>=0.
%H A089505 W. Lang, <a href="/A089505/a089505.txt">First 7 rows</a>.
%F A089505 a(n, m)= D(n)*((-1)^(n-m))*(((m+2)*(m+1)*m)^(n-1))/(product(fallfac(m+2, 3)-fallfac(r+2, 3), r=1..m-1)*product(fallfac(r+2, 3)-fallfac(m+2, 3), r=m+1..n)), with D(n) := A089506(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
%F A089505 a(n, m)= A089506(n)*((-1)^(n-m))*(fallfac(m+2, 3)^(n-1))*(3*m^2+6*m+2)/((n-m)!*(m-1)!*product(fallfac(m+r+2, 2)-r*m, r=1..n)), n>=m>=1.
%e A089505 [1]; [ -1,4]; [1,-24,50]; [ -1,114,-950,1350]; ...
%e A089505 a(3,2)= -24 = 27*(-1)*((4*3*2)^2)/((4*3*2-3*2*1)*(5*4*3-4*3*2)).
%e A089505 A089504(2+3,3) = A089513(2) = 6156 = (1*(3*2*1)^2 - 24*(4*3*2)^2 + 50*(5*4*3)^2)/27.
%t A089505 b[n_, m_] := (-1)^(n - m)*FactorialPower[m + 2, 3]^(n - 1)/(Product[ FactorialPower[m + 2, 3] - FactorialPower[r + 2, 3], {r, 1, m - 1}] * Product[ FactorialPower[r + 2, 3] - FactorialPower[m + 2, 3], {r, m + 1, n}]); den[n_] := LCM @@ Table[ Denominator[b[n, m]], {m, 1, n}]; a[n_, m_] := den[n]*b[n, m]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 02 2016 *)
%Y A089505 Companion denominator sequence is A089506.
%K A089505 sign,easy,tabl
%O A089505 1,3
%A A089505 _Wolfdieter Lang_, Dec 01 2003