cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089517 Array used for numerators of g.f.s for column sequences of array A078741 ((3,3)-Stirling2).

This page as a plain text file.
%I A089517 #10 Aug 29 2019 16:02:13
%S A089517 1,18,9,432,1,672,14400,243,47520,648000,27,36396,3790800,38102400,1,
%T A089517 9765,5115888,354715200,2844979200,1107,2499552,757646784,39182330880,
%U A089517 263363788800,54,546453,592216272,123294623040,5089348454400
%N A089517 Array used for numerators of g.f.s for column sequences of array A078741 ((3,3)-Stirling2).
%C A089517 The row length sequence for this array is A004396(n-2)=floor((2*n-3)/3), n>=3: [1,1,2,3,3,4,5,5,6,7,7,8,9,9,10,...].
%C A089517 The g.f. G(m,x) for the m-th column sequence (with leading zeros) of array A078741 is given there. The recurrence is G(m,x) = x*(3*fallfac(m-1,2)*G(m-1,x) + 3*(m-2)*G(m-2,x) + G(m-3,x))/(1-fallfac(m,3)*x), m>=4, with inputs G(1,x)=0=G(2,x) and G(3,x)=x/(1-(3*2*1)*x); where fallfac(n,m) := A008279(n,m) (falling factorials). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=3: recurrence for S_{3,3}(n,k).
%H A089517 W. Lang, <a href="/A089517/a089517.txt">First 11 rows</a>.
%F A089517 a(n, m) from: sum(a(n, m)*x^m, m=0..kmax(n)) = G(n, x)* product(1-fallfac(p, 3)*x, p=3..n)/x^ceiling(n/3), n>=3, with G(n, x) defined from the recurrence given above and kmax(n) := A004523(n-3)= floor(2*(n-3)/3) = A004396(n-3)-1.
%e A089517 [1]; [18]; [9,423]; [1,672,14400]; [243,47520,648000]; ...
%e A089517 G(4,x)/(x^2) = 18/((1-3*2*1*x)*(1-4*3*2*x)). kmax(4)=0, hence P(4,x)=a(4,0)=18; x^2 from x^ceiling(4/3).
%K A089517 nonn,easy,tabf
%O A089517 3,2
%A A089517 _Wolfdieter Lang_, Dec 01 2003